Solving Identity Question: (cosx)^2 = (1 + cos2x)/2

  • Thread starter Thread starter ZedCar
  • Start date Start date
  • Tags Tags
    Identity
ZedCar
Messages
353
Reaction score
1

Homework Statement



In a worked example I have of an integration it states the integral of (cosx)^2 = the integral of (1 + cos2x)/2

How is this equality reached?

Is this a known identity, (cosx)^2 = (1 + cos2x)/2 ?

Thank you.


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
Yes.
 
Yep, that's a very well-known identity, derived from very simple algebra from ##\cos\left(2\cdot x\right)=2\cdot\cos^2\left(x\right)-1##
 
cos(x + x) = … ? :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top