romeo6
- 53
- 0
Hey folks, can anyone give me some pointers with the following:
-\frac{1}{2}\sum_{m,n}\frac{\partial}{\partial s}|_{s=0}\int\frac{d^4k}{(2\pi)^4}(k^2+M^2_{m,n})^{-s}
=-\frac{1}{32\pi^2}\frac{\partial}{\partial s}|_{s=-2}\frac{1}{s(s+1)}\sum_{m,n}(M_{m,n}^2)^{-s}
Any hints here would be great, my Schaums isn't coming in too useful here.
Thanks!
-\frac{1}{2}\sum_{m,n}\frac{\partial}{\partial s}|_{s=0}\int\frac{d^4k}{(2\pi)^4}(k^2+M^2_{m,n})^{-s}
=-\frac{1}{32\pi^2}\frac{\partial}{\partial s}|_{s=-2}\frac{1}{s(s+1)}\sum_{m,n}(M_{m,n}^2)^{-s}
Any hints here would be great, my Schaums isn't coming in too useful here.
Thanks!