Solving Initial Value Problems for Second Order Differential Equations

  • Thread starter Thread starter tracedinair
  • Start date Start date
  • Tags Tags
    Initial Value
tracedinair
Messages
47
Reaction score
0

Homework Statement



Solve the following IVPs.

a) y'' + y = 0 for y(x0)=1 and y'(x0)=0

b) y'' - λ2y = 0 for y(x0)=0 and y'(x0)=1

Homework Equations


The Attempt at a Solution



a) Two distinct solutions for y'' + y = 0 are cos(x) and sin(x).

So, y(x0) = C1cos(x0) + C2sin(x0) = 1

y'(x0) = -C1sin(x0) + C2cos(x0) = 0

b) Two distinct solutions for y'' + λ2y = 0 is just e^(\lambdax) and e^(-\lambdax)

So,

y(x0) = C1e^(\lambdax0) + C2e^(\lambdax0)) = 0

y'(x0) = C1λe^(\lambdax0) - C2λe^(-\lambdax0) = 1

Now do I need to go through and solve for the C's or I am OK?
 
Physics news on Phys.org
tracedinair said:
Now do I need to go through and solve for the C's … ?

Yup! :biggrin:
 
tiny-tim said:
Yup! :biggrin:

Thank you, my notes weren't very clear on the next step.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top