Solving Int e^(1/x) - Step by Step Guide

  • Thread starter Thread starter Muzikh
  • Start date Start date
  • Tags Tags
    Integral
Muzikh
Messages
1
Reaction score
0
Here's my problem. \int e^{1/x} dx
This was my attempt:

\int e^{1/x} dx , u = e^{1/x} , du = -\frac{ e^{1/x}}{x^{2}}

so, x^{2} du = - e^{1/x}

I = - \int x^{2} du , t = x , dt = (1) dx

I = \int x^{2} [\frac{ e^{1/x}}{x^{2}}] (1) dx = \int e^{1/x} dx


As you can see... I've only gone full circle with this approach. Any help would be greatly appreciated. Thanks.
 
Physics news on Phys.org
This integral can not be written in terms of elementary functions, only in terms of the http://en.wikipedia.org/wiki/Exponential_integral" . To do this, you will need a substitution (different from the one you did, but simple) and partial integration.
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top