squarks
- 16
- 0
Hi. I'm trying to do a simple integration, but I cannot seem to get it. Please help!
\int\frac{xdx}{\left(x-a\right)^2}
I'm simply using integration by part using:
\int udv = uv - \int vdu
with:
u=x \rightarrow du=dx
dv=\frac{dx}{\left(x-a\right)^2} \rightarrow v=-\frac{1}{\left(x-a\right)}
Just working it out:
\int\frac{xdx}{\left(x-a\right)^2}=-\frac{x}{\left(x-a\right)}+\int\frac{dx}{x-a}
=-\frac{x}{\left(x-a\right)}+ln\left(x-a\right)
but the right answer according to integrator (Mathematica, Maple) is:
\int\frac{xdx}{\left(x-a\right)^2}=-\frac{a}{\left(x-a\right)}+ln\left(x-a\right)
I'm missing some very small detail here...
Homework Statement
\int\frac{xdx}{\left(x-a\right)^2}
Homework Equations
I'm simply using integration by part using:
\int udv = uv - \int vdu
with:
u=x \rightarrow du=dx
dv=\frac{dx}{\left(x-a\right)^2} \rightarrow v=-\frac{1}{\left(x-a\right)}
The Attempt at a Solution
Just working it out:
\int\frac{xdx}{\left(x-a\right)^2}=-\frac{x}{\left(x-a\right)}+\int\frac{dx}{x-a}
=-\frac{x}{\left(x-a\right)}+ln\left(x-a\right)
but the right answer according to integrator (Mathematica, Maple) is:
\int\frac{xdx}{\left(x-a\right)^2}=-\frac{a}{\left(x-a\right)}+ln\left(x-a\right)
I'm missing some very small detail here...