yungman
- 5,741
- 294
Please tell me what did I do wrong on this integration. The book claimed this can only be solved in numerical method and the answer is 1.218.
\int _0^{\pi} \frac {\cos ^2\left [\frac {\pi} 2 \;\cos\;\theta\right]}{\sin \theta}\;d\;\theta
\hbox { Let }\; u=\frac {\pi} 2\; \cos \theta\;\Rightarrow\; d\theta =-\frac{2\;d\;u}{\pi\;\sin\;\theta}\; \Rightarrow\;\int _0^{\pi} \frac {\cos ^2\left [\frac {\pi} 2 \;\cos\;\theta\right]}{\sin \theta}\;d\;\theta \;=\; -\frac 2 {\pi}\int \cos^2\;u \;d\;u\;=-\frac 1 {\pi} \left[ \int d\;u \;+\; \int \cos(2u) d\;u \right ]
= -\left [\frac { \frac {\pi} 2 \cos \theta}{\pi}\right]_0^{\pi} \;-\;\frac 1 {2\pi} \int \cos v \;dv \;\;\;\;\;\;\hbox { where }\;\; \;v=2u \;\hbox { and }\;d\;u=\frac {d\;v} 2
= 1 -\left[\frac { \sin (2\frac {\pi} 2 \;\cos \theta)}{2\pi}\right]^{\pi}_0 \;= 1
I solve this without using numerical method and the answer is 1 instead of 1.218. Who is right?
\int _0^{\pi} \frac {\cos ^2\left [\frac {\pi} 2 \;\cos\;\theta\right]}{\sin \theta}\;d\;\theta
\hbox { Let }\; u=\frac {\pi} 2\; \cos \theta\;\Rightarrow\; d\theta =-\frac{2\;d\;u}{\pi\;\sin\;\theta}\; \Rightarrow\;\int _0^{\pi} \frac {\cos ^2\left [\frac {\pi} 2 \;\cos\;\theta\right]}{\sin \theta}\;d\;\theta \;=\; -\frac 2 {\pi}\int \cos^2\;u \;d\;u\;=-\frac 1 {\pi} \left[ \int d\;u \;+\; \int \cos(2u) d\;u \right ]
= -\left [\frac { \frac {\pi} 2 \cos \theta}{\pi}\right]_0^{\pi} \;-\;\frac 1 {2\pi} \int \cos v \;dv \;\;\;\;\;\;\hbox { where }\;\; \;v=2u \;\hbox { and }\;d\;u=\frac {d\;v} 2
= 1 -\left[\frac { \sin (2\frac {\pi} 2 \;\cos \theta)}{2\pi}\right]^{\pi}_0 \;= 1
I solve this without using numerical method and the answer is 1 instead of 1.218. Who is right?