Solving Laplace Operator Integral with Partial Integration

  • Thread starter Thread starter jet10
  • Start date Start date
  • Tags Tags
    Laplace Operator
jet10
Messages
36
Reaction score
0
I have read in an electrodynamics book that
<br /> \int d^3r \frac{\Delta\Phi(r)}{r}=\int d^3r \Phi(r)}\Delta \frac{1}{r}<br />
is possible through partial integration. But how?? Can some one help me on this by showing me the steps? Thanks
 
Physics news on Phys.org
Start with the following two identities:
\int d^3 r \nabla \cdot \left( \frac{1}{r} \nabla \Phi \right) = \int d^3 r \left( \nabla \frac{1}{r} \cdot \nabla \Phi + \frac{1}{r} \Delta \Phi \right)

\int d^3 r \nabla \cdot \left( \Phi \nabla \frac{1}{r} \right) = \int d^3 r \left( \nabla \frac{1}{r} \cdot \nabla \Phi + \Phi \Delta \frac{1}{r}\right)

Now the left hand side of each equation can written as a surface integral which gives zero. This gives
<br /> \int d^3 r \left( \nabla \frac{1}{r} \cdot \nabla \Phi + \frac{1}{r} \Delta \Phi \right) = 0 <br />
<br /> \int d^3 r \left( \nabla \frac{1}{r} \cdot \nabla \Phi + \Phi \Delta \frac{1}{r} \right) = 0 <br />
but since these two expressions have the same first term you can easily see that
<br /> \int d^3 r \frac{1}{r} \Delta \Phi = \int d^3 r \Phi \Delta \frac{1}{r} <br />
 
Thanks for your reply. Just one thing I am not able to see yet. How are these equal to zero?
<br /> \int d^3 r \nabla \cdot \left( \frac{1}{r} \nabla \Phi \right)=\oint dA \frac{1}{r} \nabla \Phi=0?<br />
<br /> \int d^3 r \nabla \cdot \left( \Phi \nabla \frac{1}{r} \right)=\oint dA \Phi \nabla \frac{1}{r}=0?<br />
 
Last edited:
You integrate on a surface at infinity, and with very weak assumptions about the fall off of \Phi with distance, you can show those area integrals go to zero.
 
That's clever. Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top