mliuzzolino
- 58
- 0
Homework Statement
<br /> <br /> \dfrac{\partial^2 \varphi }{ \partial x^2} - \dfrac{\partial ^2 \varphi }{\partial t^2} = 1<br /> <br />
Initial Conditions:
\varphi (x, 0) = 1; \varphi_t (x, 0) = 1
Boundary Condition:
\varphi (0, t) = 1
On 0 \leq x < \infty, 0 \leq t < \infty
Homework Equations
Let {\Phi} denote the Laplace transform from t to s.
The Attempt at a Solution
Apply Laplace Transform to PDE:
<br /> <br /> \dfrac{\partial^2 \Phi }{ \partial x^2} - s^2\Phi + s\varphi (x, 0) + \varphi _t (x, 0) = \dfrac{1}{s}<br /> <br />
Apply Initial Conditions:
<br /> <br /> \dfrac{\partial^2 \Phi }{ \partial x^2} - s^2\Phi + s + 1 - \dfrac{1}{s} = 0<br /> <br />
<br /> <br /> \dfrac{\partial^2 \Phi }{ \partial x^2} - s^2\Phi + \dfrac{s^2 + s - 1}{s} = 0<br /> <br />
This leads to the eigenvalue being something like:
<br /> <br /> r = \dfrac{s^3 \pm \sqrt{s^6 - 4s(s^2 + s - 1)}}{2s}<br /> <br />
which is always positive for both cases.
The solution in Laplace space should be something like:
<br /> <br /> \Phi (x, s) = A(s) e ^{\dfrac{s^3 + \sqrt{s^6 - 4s(s^2 + s - 1)}}{2s}x} + B(s) e ^{\dfrac{s^3 - \sqrt{s^6 - 4s(s^2 + s - 1)}}{2s}x}<br /> <br />
and since the eigenvalue is always positive, as x goes to infinity the exponential terms will explode, requiring both A(s) and B(s) to be equal to 0.
What am I doing wrong? Any ideas?