MHB Solving Pot Roast & Math Problems: A Walkthrough

  • Thread starter Thread starter Cuberoot1
  • Start date Start date
AI Thread Summary
The discussion revolves around solving two mathematical problems: cooking time for pot roasts and simplifying an algebraic expression. The cooking time formula is h = 0.9p^0.6, and if pot roast A weighs twice as much as pot roast B, the cooking time for A is calculated by substituting the weight of A into the formula. For the algebraic expression, clarification is sought on simplifying (x^4-n • y^n+4 / xy^n-4)^2, with guidance provided on applying power rules to achieve the correct simplification. The final advice emphasizes the importance of simplifying the expression correctly. Overall, the thread focuses on providing step-by-step solutions to the posed mathematical problems.
Cuberoot1
Messages
4
Reaction score
0
Could somebody give me a walkthrough for this problem?

The number of hours h needed to cook a pot roast that weighs p pounds can be approximated by using the formula h = 0.9p^0.6.

b. If pot roast A weighs twice as much as pot roast B, then roast A should be cooked for a period of time that is how many times longer than the time required for roast B to cook?

Also.

I'm stuck in this problem.

( x^4-n • y^n+4 / xy^n-4 )^2

I think this is next.

( x^4-n-n-4 • y^n+4-n-4 )^2

If I'm right, what now? If I'm wrong, what did I do wrong? If I could have written my problem in a better way that is easier to understand, then please tell me.
 
Mathematics news on Phys.org
Cuberoot said:
Could somebody give me a walkthrough for this problem?

The number of hours h needed to cook a pot roast that weighs p pounds can be approximated by using the formula h = 0.9p^0.6.

b. If pot roast A weighs twice as much as pot roast B, then roast A should be cooked for a period of time that is how many times longer than the time required for roast B to cook?
Good evening,

If $$h_B=0.9 \cdot p^{0.6}$$ then you only have to replace p by the weight of A relative to B. Afterwards simplify a little bit.

Also.

I'm stuck in this problem.

( x^4-n • y^n+4 / xy^n-4 )^2

I think this is next.

( x^4-n-n-4 • y^n+4-n-4 )^2

If I'm right, what now? If I'm wrong, what did I do wrong? If I could have written my problem in a better way that is easier to understand, then please tell me.

If you mean:

$$\left(\frac{x^{4-n} \cdot y^{n+4}}{x \cdot y^{n-4}}\right)^2$$

and you want to use the power rules then you should come out with

$$x^{2(4-n-1)} \cdot y^{2(n+4-(n-4))}$$

Simplify!
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top