Solving Quadratic Trig Equation

  • Thread starter Thread starter Veronica_Oles
  • Start date Start date
  • Tags Tags
    Quadratic Trig
AI Thread Summary
To solve the equation sin(2x) + sin(x) = 0, the initial factorization leads to sin(x)(sin(x) + 1) = 0. This results in solutions for sin(x) = 0 at x = 0, π, and 2π, and for sin(x) = -1 at x = 3π/2. The discussion clarifies that solutions can be expressed in the form x = nπ for integers n, and that the periodic nature of the sine function means additional solutions can be derived by adding multiples of 2π. The confusion arises from the reasoning behind including 2π as a solution, which is justified by the periodicity of the sine function.
Veronica_Oles
Messages
141
Reaction score
3

Homework Statement


Solve sin2x + sinx =0

Homework Equations

The Attempt at a Solution


I first factor and get
sinx(sinx + 1) = 0

sinx = 0
x = sin-1(0)
x= 0
x= π-0 = π

sinx = -1
x= sin-1(1)
x= π/2
x = π + π/2 = 3π/2

x = { 0, π, 3π/2 }

However when I look at the solution this is correct but they also added 2π and I'm not sure why this is?
It seems like for sinx = 0 they did x = 2π-0 = 2π why is this? I thought that if it's zero you obtain your other value through the sin quadrant.
 
Physics news on Phys.org
Veronica_Oles said:

Homework Statement


Solve sin2x + sinx =0

Homework Equations

The Attempt at a Solution


I first factor and get
sinx(sinx + 1) = 0

sinx = 0
x = sin-1(0)
x= 0
x= π-0 = π

sinx = -1
x= sin-1(1)
x= π/2
x = π + π/2 = 3π/2

x = { 0, π, 3π/2 }

However when I look at the solution this is correct but they also added 2π and I'm not sure why this is?
It seems like for sinx = 0 they did x = 2π-0 = 2π why is this? I thought that if it's zero you obtain your other value through the sin quadrant.

For ##sinx = 0, x = n\pi## because ##sinx## becomes zero for ##n = 0, 1, 2, \cdots##
Can you conclude in an analogous way for ##sinx + 1 = 0##?
 
Veronica_Oles said:
x = { 0, π, 3π/2 }

However when I look at the solution this is correct but they also added 2π and I'm not sure why this is?
It seems like for sinx = 0 they did x = 2π-0 = 2π why is this? I thought that if it's zero you obtain your other value through the sin quadrant.
If X is a solution, or X+2kπ is also solution where k is integer. So the solutions of the problem are 0+2kπ; π+2nπ; 3π/2+2mπ,(k, m, n are integers).

Possibly, the problem asked the solutions in the closed interval [0, 2π]. In this case, both 0 and 2π have to be included.
 
You wrote:
Veronica_Oles said:
It seems like for sin x = 0 they did x = 2π-0 = 2π ...
If they actually stated that in their solution, then that's in error and what you say after that is correct.

However, if it simply "seems" to you that they did this to get 2π, then I suspect that they did not use that reasoning, but merely used the fact that sin(x) has a period of 2π so that if x = 0 is a solution then x = 0 + 2π is also a solution.
 
Veronica_Oles said:

Homework Statement


Solve sin2x + sinx =0

Homework Equations

The Attempt at a Solution


I first factor and get
sinx(sinx + 1) = 0

sinx = 0
x = sin-1(0)
x= 0
x= π-0 = π

sinx = -1
x= sin-1(1)

You mean ##x = \arcsin(-1)##, which doesn't give you ##\frac \pi 2##. It gives you ##x = -\frac \pi 2##. Your ##\frac{3\pi} 2## below is correct but your reasoning is incorrect.

x= π/2
x = π + π/2 = 3π/2

x = { 0, π, 3π/2 }
 
LCKurtz said:
You mean ##x = \arcsin(-1)##, which doesn't give you ##\frac \pi 2##. It gives you ##x = -\frac \pi 2##. Your ##\frac{3\pi} 2## below is correct but your reasoning is incorrect.
x = sin-1(-1)
x = -π/2
x = π-(-π/2)
x = 3π/2
 
Veronica_Oles said:
x = sin-1(-1)
x = -π/2
x = π-(-π/2)
x = 3π/2

That gets ##x=\frac \pi 2## alright, but if I wanted an angle in ##[0,2\pi]##, I would simply take ##-\frac \pi 2 + 2\pi##, which would give ##\frac {3\pi} 2##. I don't understand your thinking to calculate ##\pi - (-\frac \pi 2)##. On what basis would you calculate that way?
 
Back
Top