Solving Substitution Integrals: Guide and Example Problems

3.141592654
Messages
85
Reaction score
0

Homework Statement



\int(x^5\sqrt{x^2+4})dx

The answer is given as: =105(x^2+4)^\frac{3}{2}(15x^4-48x^2+128)+C

Homework Equations





The Attempt at a Solution



u=\sqrt{x^2+4}

u^2=x^2+4

2udu=2xdx

udu=xdx

u^2-4=x^2

\int(x^5\sqrt{x^2+4})dx = \int(u^2+4)^2u^2du = \int(u^4-8u^2+16)u^2du

=\int(u^6-8u^4+16u^2)du = \int(u^6)du-8\int(u^4)du+16\int(u^2)du

=\frac{u^7}{7}-8\frac{u^5}{5}+16\frac{u^3}{3}+C

=\frac{(x^2+4)^\frac{7}{2}}{7}-8\frac{(x^2+4)^\frac{5}{2}}{5}+16\frac{(x^2+4)^\frac{3}{2}}{3}+C

=(x^2+4)^\frac{3}{2}[\frac{(x^2+4)^\frac{4}{2}}{7}-8\frac{(x^2+4)^\frac{2}{2}}{5}+\frac{16}{3}]+C

=(x^2+4)^\frac{3}{2}[\frac{1}{7}(x^2+4)^2-\frac{8}{5}(x^2+4)+\frac{16}{3}]+C

=(x^2+4)^\frac{3}{2}[\frac{1}{7}(x^4-8x^2+16)-\frac{8}{5}(x^2+4)+\frac{16}{3}]+C

=(x^2+4)^\frac{3}{2}[\frac{1}{7}x^4-\frac{8}{7}x^2+\frac{16}{7}+\frac{8}{5}x^2+\frac{32}{5}+\frac{16}{3}]+C

=(x^2+4)^\frac{3}{2}(\frac{1}{7}x^4+\frac{16}{35}x^2+\frac{1248}{105})+C


I'm obviously off by a bit from the stated answer, but I can't find where I may have went wrong.
 
Physics news on Phys.org
I don't see anything obviously wrong, other than a typo or two that didn't affect your calculuations.
\int(x^5\sqrt{x^2+4})dx = \int(u^2+4)^2u^2du = \int(u^4-8u^2+16)u^2du
The first integral in u should have (u^2 - 4), not (u^2 + 4), but the following expression is correct.

In the next line, you have your antiderivative. As a sanity check, take its derivative, and if you get the original integrand, your work is good.
=\frac{(x^2+4)^\frac{7}{2}}{7}-8\frac{(x^2+4)^\frac{5}{2}}{5}+16\frac{(x^2+4)^\fr ac{3}{2}}{3}+C


As a final check, if the derivative of your last expression is equal to the integrand, then your answer works. If that's the case, you might want to differentiate the answer you are given and see if it works, also.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top