F fills first; L prevents any flow reaching I from J because inlet to I is higher than outlet to L. J must fill before any tank above (A, B, or C).
BUT ASSUMPTIONS ARE EVERYTHING.
F fills first only if 1) all the pipes are the same diameter and of the same material, 2) the heights of all tanks are identical, 3) the flow from the faucet does not exceed the pipe capacity (as indicated by the drip), and 4) therefore, flow through system is not sufficient to impact dynamic pressure caused by line friction and elbows. With these assumptions, the only law needed is water seeking lowest level.
Once you violate any of these assumptions, you will need to work through the system performance using the Bernoulli's equation; and the complexity of the system increases substantially, probably requiring a full dynamic modeling exercise.
EXAMPLE: Let's just change one assumption: that the faucet inflow exceeds the outflow capacity of Tank A, even when tank A is full.
When the faucet flow rate exceeds the outflow pipe capacity, A will begin to fill to over flowing. As it does, the pressure at the outlet will increase, thereby increasing the outflow rate. Thus, the inflow to i B will be greater than the outflow from B to C, and B will begin to fill. Since the outlet from B is lower relative to the tank height than is the outlet from tank A, at some point, the outflow from B may match that from A. The height difference of the two tanks as well as the depth of the outlet of the tank will determine whether B will over flow. It does appear that tank B is taller than tank A and that the A outlet is not as deep at the B outlet, thus the level in B will stabilize below over flow. This same exercise must now proceed through each box.Reference
https://www.physicsforums.com/threads/which-tank-fills-first.921715/