Solving the Problem of an Infinite Chain Slipping Down a Table

johnson12
Messages
18
Reaction score
0
Hello all, I'm having trouble with the following problem:

Pb: A chain with constant density and infinite length is slipping down from the table without friction. Determine the position of the tip of the chain at time t.

I know there are a few ways to approaching this problem, namely from Newtons equations, or lagranges equations, but I am quite rusty with this, so any suggestions would help a lot, thanks.
 
Physics news on Phys.org
Hi,

do you know the Euler–Lagrange equations ?
You have to find an expression for the potential and kinetic energy,
the difference is the Lagrange-function. Put this function in the Langrange equations
and you get a second order diff.-equation.

kind regards
 
Hi johnson12! :smile:

Infinite length? … presumably only in one direction? :wink:

Use conservation of energy.
 
are you referring to this equation:

\frac{\partial L}{\partial x_{i}} - \frac{d}{dt}\frac{\partial L}{\partial \dot{x_{i}}} = 0, i=1,2,3

where L = T - U is the lagrange function,

how can I use this to model my problem?
(ps. I am apologize if my physics is wrong, unfortunately I am a math major).
 
johnson12 said:
are you referring to this equation:

\frac{\partial L}{\partial x_{i}} - \frac{d}{dt}\frac{\partial L}{\partial \dot{x_{i}}} = 0, i=1,2,3

where L = T - U is the lagrange function,

how can I use this to model my problem?
(ps. I am apologize if my physics is wrong, unfortunately I am a math major).

Yes, but we need only one variable x_1 = y for example. Now you have to find an expression
for the kinetic energy T which is simple and for the potential energy U which is simple
as well. U depends of course at your point of reference. Make a sketch.
 
I get that T(\dot{x}) = \frac{1}{2}m \dot{x}^{2}
U(x) = mgx,

\frac{\partial L}{\partial x}= - m g
\frac{d}{dt} \frac{\partial L}{\partial \dot{x}}= m\ddot{x}
Lagranges equation implies m\ddot{x} + mg = 0

but I'm a little confused, if the chain is of infinite length, would it then have infinite mass?

so how can the chain move?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top