Solving the Schrodinger Equation for V(x)=A sech^2(αx)

Mahasweta
Messages
6
Reaction score
0
1. How can I solve the Schrodinger equation for a potential V(x)= A sech^2(αx) ? How do I come to know that whether sech(αx) is a non-node bound state of the particular or not?




2. p^2/2m + V(x) = E



3. exp(kx)[A tanh(αx) + C]
 
Physics news on Phys.org
Welcome to PF;
How can I solve the Schrodinger equation for a potential V(x)= A sech^2(αx) ?
You put the potential into the Schodinger equation with appropriate boundary conditions - just like any DE.
Note: $$\text{sech}(x)=\frac{2e^{-x}}{1+e^{-2x}}$$

How do I come to know that whether sech(αx) is a non-node bound state of the particular or not?
... "non bound state of a particular" what? That sentence is incomplete.

i.e. are you saying that you are given ##\psi=\text{sech}(ax)## and you want to know if it is the wavefuction of a bound energy eigenstate of the potential you've been given, if it is a bound state of any potential or what?

You can figure out a lot about a potential by plotting it and using your experience of solving for different wells - like what sorts of potentials have bound states etc.
 
I meant that for a particular potential how do I come to know that among a set of wave functions for that potential which one is non-node bound state?
 
Well you have two conditions to be satisfied here.
1. the state is bound
2. the state has no nodes

Do you know how to test for these conditions separately?
Do you know what these conditions mean?

Perhaps this will help?
http://arxiv.org/pdf/quant-ph/0702260.pdf
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top