noblerare
- 49
- 0
Homework Statement
\int\frac{dx}{1-tan^2(x)}
Homework Equations
n/a
The Attempt at a Solution
Here's what I've tried:
u=tanx
x=arctanu
dx=\frac{du}{1+u^2}
\int\frac{du}{(1+u^2)(1-u^2)}
I then used partial fractions to get:
\int\frac{0.5}{1-u^2}+\frac{0.5}{1+u^2}du
\frac{1}{2}\int\frac{du}{1+u^2}+\frac{1}{2}\int\frac{du}{1-u^2}
The left side is simply arctanu while I used trig substitution to solve the right side
\frac{1}{2}arctanu-\frac{1}{2}\intcsc\thetad\theta
\frac{1}{2}arctan(tanx)+\frac{1}{2}ln(csc\theta+cot\theta) + C
\frac{1}{2}x + \frac{1}{2}ln(\frac{1}{\sqrt{1-u^2}}+\frac{u}{\sqrt{1-u^2}}) + C
With more re-substitution, I end up with:
\frac{1}{2}x+\frac{1}{2}ln(tanx+1)-\frac{1}{2}ln(\sqrt{1-tan(x)^2}+C
For some reason, this is incorrect because when I try to take the derivative of that, I do not end up with \frac{1}{1-tan(x)^2}
Is there something I'm doing wrong? What should I do?