3.141592654
- 85
- 0
Homework Statement
\int\frac{1}{t^3\sqrt{t^2-1}}dt with limits of integration [\sqrt{2}, 2]
Homework Equations
The Attempt at a Solution
Using trig. sub, I have sec \theta=t
dt=sec \theta tan \theta d \theta
\int\frac{1}{t^3\sqrt{t^2-1}}dt with limits of integration [\sqrt{2}, 2]
=\int\frac{sec \theta tan\theta d \theta}{(sec \theta)^3\sqrt{(sec \theta)^2-1}}
=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(sec \theta)^2-1}}
=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(tan \theta)^2}}
=\int\frac{tan \theta d \theta}{(sec \theta)^2tan \theta}
=\int\frac{d \theta}{(sec \theta)^2}
=\int\cos \theta^2 d\theta
=\int\frac{1+cos \theta}{2} d\theta
=\int\frac{1}{2}+\frac{cos \theta}{2} d\theta
=\frac{1}{2}\int d \theta +\frac{1}{2}\int cos \theta d \theta
=\frac{1}{2} \theta | +\frac{1}{2}sin \theta |
=\frac{1}{2}arcsec t +\frac{1}{2}t with limits [\sqrt{2},<br /> 2]
=\frac{1}{2}[arcsec (2)-arcsec (\sqrt{2})]+\frac{1}{2}[2-\sqrt{2}]
I need to get to the answer: \frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}. I don't see anything wrong up to this point so I guess my question is more of an algebra question, but how could I arrive at the stated answer?