The region in problem 1 has boundaries 2x+ y= 0, 3x+ y= 0, x- 2y= 1 and x- 2y= 2.
tiny-tim suggested the substitution u = 3x + y, v = x - 2y.
Solve for x and y in terms of u and v: Multiplying the first equation by 2 and adding to the second equation gives 2u+ v= 6x+ 2y+ x- 2y= 7x so x= (2u+ v)/7. Multiplying the second equation by 3 and subtracting the first equation gives 3v- u= 3x-6y- 3x- y= -7y so y= (u- 3v)/7.
Convert the boundary to uv-coordinates by substituting those for x and y:
2x+ y= 2(2u+v)/7+ (u-3v)/7= (4u+ 2v+ u- 3v)/7= (5u- v)/7= 0 so 5u- v= 0
It should be obvious that the last three equations become u= 0, v= 1, and v= 2, but as a demonstration, x- 2y= (2u+ v)/7- 2(u- 3v)/7= (2u+ v- 2u+ 6v)/7= 7v/7= v= 1.
So you want to integrate on the region bounded by the lines u= 0, u= v/5, v= 1, and v= 2. I recommend taking the "outer integral" to be with respect to v, from 1 to 2, and the "inner integral" with respect to u, from 0 to v/5. Be careful about dudv. It is, of course, the Jacobian.