Special relativity and really fast trains

AI Thread Summary
Two trains, A and B, each 240 m long, are moving at 0.665c in opposite directions, and the problem involves calculating the relative speed of train B from the perspective of a passenger on train A. The correct answer for part A is found to be 0.922c, achieved by using the velocity transformation equation. For part B, the passenger struggles to calculate the time it takes for train B to pass, initially using an incorrect speed which leads to confusion. The solution involves applying the correct contracted length of 92.82 m and the appropriate speed to find the time as approximately 3.36e-7 seconds. The discussion emphasizes the importance of correctly applying relativistic equations for accurate results.
JJK1503
Messages
12
Reaction score
0

Homework Statement



Two passenger trains A and B, each 240 m long, pass a 60 m long railroad platform in Winnepeg. The trains are moving in opposite directions at equal speeds of 0.665c with respect to the ground. Train A is traveling west and all tracks are perfectly straight.

A) From the point of view of a passenger on train A, how fast is train B moving? (Give your answer as a fraction of the speed of light, e.g. if you get 0.952c, you enter 0.952.)

B) How long does it take train B to pass the passenger on train A?

Homework Equations



u' = ( u - v ) / ( 1 - ( u v ) / c^2 )

u = ( u + v ) / ( 1 + (u v ) / c^2 )

gamma = 1 / sqrt [ 1 - ( v / c ) ^2 ]

l = l_proper / gamma

The Attempt at a Solution



I am studying for a final exam. The above was part of a multipart homework question. I got everytjing correct except for what is shown above. The homework has been returned and I know that the answer to part A is .922 and the answer to part B is 3.36e-7 s. I can't figure out how to get there.

First I looked at the Galilean method. This put me at something like 1.32 c. obviously this is wrong and I didn't even attempt it.

Then I tried to use the velocity equations stated above using u' and got u' = 0 / something

I then figured out part a by using the u equation and substituting the values u = v = .665c. This got me to the .922 I was looking for.

For part b I am still stuck. I thought what I should do is use this new speed I found in part a to calculate a new gamma

from the gamma equation above; using v = .992c I find gamma = 2.59

then I calculate length dilation of the train using gamma = 2.59 and l_proper = 240 m to find l = 92.82 m.

then I use t = d / v = 112.15 / .665c = 4.65e-7.

I really need some conceptual help on this one.

I appreciate any response.
 
Physics news on Phys.org
Kudos for your stamina! You did well on part a. The two expressions are in fact one: u' expression is fine but own speed is u and other train speed is -v (it's moving in the other direction).

In part b you use the right v to find gamma. All you have to do is use the same v on the contracted(*) length of 92.82 m.

( (*) in general we speak of time dilation and length contraction)
 
BvU said:
Kudos for your stamina! You did well on part a. The two expressions are in fact one: u' expression is fine but own speed is u and other train speed is -v (it's moving in the other direction).

In part b you use the right v to find gamma. All you have to do is use the same v on the contracted(*) length of 92.82 m.

( (*) in general we speak of time dilation and length contraction)

Ahhh. I plugged in the old v. thanks for your help.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top