In summary: Under the following conditions:-The masses of the particles are the same-The velocities of the particles are the same-The distances between the particles are the sameThus, in summary, under these conditions, the energy "equals" the mass times the speed of light squared.
  • #1
VoteSaxon
25
1
Homework Statement
Using the special relativity formulae
p = mv / [1 - (v/c)2]
E2 = p2c2 + m2c4
derive linear relations between:
(i) momentum and mass;
(ii) energy and mass;
(iii) energy and momentum,
which involve only c, c2, β = v/c, and γ (= 1/sqrt(1 - β2))

The attempt at a solution

I am pretty sure the answer to (i) is p = γmv = γmβc, although I am unsure if this counts as a linear relation.
I suppose for (ii) I should be aiming for E = mc2, and for (iii) maybe I should be trying to get to E = pc (although I think this only applies to massless particles), but I haven't had much luck thus far.
I know these aren't really that hard, but for some reason my brain is just drawing blanks with these.

Many thanks for help and patience.
 
Physics news on Phys.org
  • #2
I think that here "linear" means that the two variables being related are each of first-power (no squares or square roots).
So, (i) is fine.
It seems that you have three quantities: p,m,E (mutually related by the above)... and you wish to find the relations between pairs chosen from those three.
So, what would you get for (ii)?
 
  • #3
robphy said:
I think that here "linear" means that the two variables being related are each of first-power (no squares or square roots).
So, (i) is fine.
It seems that you have three quantities: p,m,E (mutually related by the above)... and you wish to find the relations between pairs chosen from those three.
So, what would you get for (ii)?

Sorry, a bit confused. I am pretty sure for (ii) I am meant to get E = mc2. My main problem is getting there from the formulae the question provided. Does that make sense? ...
 
  • #4
VoteSaxon said:
Sorry, a bit confused. I am pretty sure for (ii) I am meant to get E = mc2. My main problem is getting there from the formulae the question provided. Does that make sense? ...

From your given relations,
E is the relativistic energy, p is the relativistic momentum, and m is the [invariant] rest mass.
With these symbols, ##E\neq mc^2## in general.
You can see this immediately by plugging in "what you think your E should be" into "E2 = p2c2 + m2c4".
When (that is, Under what conditions) will E="what you think your E should be" be true?
 
Last edited:

Similar threads

Replies
6
Views
1K
Replies
4
Views
1K
Replies
4
Views
1K
Replies
28
Views
4K
Replies
27
Views
3K
Back
Top