Specific Heat Capacity for Gas

AI Thread Summary
The discussion centers on the specific heat capacities of gases in thermodynamics, specifically how they can be expressed in terms of pressure and volume. It clarifies that while specific heat capacities are often considered thermodynamic properties, they can indeed be treated as state variables, contrary to some textbooks. The relationships c_p and c_v can be expressed as functions of pressure and volume, leading to the conclusion that they are state variables. The conversation highlights a common confusion regarding the classification of specific heat capacities and emphasizes the importance of understanding their dependence on state variables. This clarification aids in the numerical modeling of these properties using tools like Cantera.
Mr. Cosmos
Messages
9
Reaction score
1
So I have a question regarding the specific heat capacities in thermodynamics. In general the specific heat capacities for a gas (or gas mixture in thermo-chemical equilibrium) can be expressed as,

## c_p = \left(\frac{\partial h}{\partial T}\right)_p \qquad \text{and} \qquad c_v= \left(\frac{\partial e}{\partial T}\right)_v ##
.
Additionally, from the state postulate of thermodynamics one can write state relationships as,

## h = h\left(p,v\right) \qquad \text{and} \qquad e = e\left(p,v\right) \qquad \text{and} \qquad T=T\left(p,v\right) ##

Now I know that the specific heats are a defined thermodynamic property and not a state variable, however, would the above relationships imply,

## c_p =c_p\left(p,v\right) \qquad \text{and} \qquad c_v= c_v\left(p,v\right) ##

?? I have never come across such a relationship (obviously not explicit) in a textbook, or even seen a surface plot to indicate this relationship. Any help would be greatly appreciated.
Note: I am aware of the reciprocity relations and Maxwell relations, but I am trying to reduce the specific heats to functional relationships of density and pressure without the temperature appearing. These relationships will be formed numerically with Cantera, but I wan't to make sure my thought process is on the right track.

Thanks,

-Mr. Cosmos
 
Last edited:
Science news on Phys.org
Mr. Cosmos said:
So I have a question regarding the specific heat capacities in thermodynamics. In general the specific heat capacities for a gas (or gas mixture in thermo-chemical equilibrium) can be expressed as,

## c_p = \left(\frac{\partial h}{\partial T}\right)_p \qquad \text{and} \qquad c_v= \left(\frac{\partial e}{\partial T}\right)_v ##
.
Additionally, from the state postulate of thermodynamics one can write state relationships as,

## h = h\left(p,v\right) \qquad \text{and} \qquad e = e\left(p,v\right) \qquad \text{and} \qquad T=T\left(p,v\right) ##

Now I know that the specific heats are a defined thermodynamic property and not a state variable,
The specific heats certainly are state variables.

however, would the above relationships imply,

## c_p =c_p\left(p,v\right) \qquad \text{and} \qquad c_v= c_v\left(p,v\right) ##
Yes.
?? I have never come across such a relationship (obviously not explicit) in a textbook, or even seen a surface plot to indicate this relationship. Any help would be greatly appreciated.
Note: I am aware of the reciprocity relations and Maxwell relations, but I am trying to reduce the specific heats to functional relationships of density and pressure without the temperature appearing. These relationships will be formed numerically with Cantera, but I wan't to make sure my thought process is on the right track.

Thanks,

Mr. Cosmos
If the heat capacities are expressed as ##C_v=C_v(p,T)## and ##C_p(p,T)##, then, from the equation of state, T=T(p,v), we have ##C_v=C_v(p,T(p,v))=C_v(p,v)## and ##C_p=C_p(p,T(p,v))=C_p(p,v)##
 
Thanks for the quick reply. I guess my confusion was with the appropriate definitions of the heat capacities being state variables. In my textbook the heat capacities are declared as non-state variables, and the same is said here,
https://www.grc.nasa.gov/www/k-12/airplane/specheat.html
However, since reading your response I have found other sources that say that they are indeed state variables. Interesting discussion.

Thanks,

-Mr. Cosmos
 
Mr. Cosmos said:
Thanks for the quick reply. I guess my confusion was with the appropriate definitions of the heat capacities being state variables. In my textbook the heat capacities are declared as non-state variables, and the same is said here,
https://www.grc.nasa.gov/www/k-12/airplane/specheat.html
However, since reading your response I have found other sources that say that they are indeed state variables. Interesting discussion.

Thanks,

-Mr. Cosmos
There is one way of knowing whether a variable is a state variable or not. If you tell me the temperature and pressure of the material and I can tell you a unique value for the variable in question (e.g., heat capacity), then the variable is a state variable. Heat capacities satisfy this requirement.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top