Spectrum of operator's exponent

sfire
Messages
2
Reaction score
0
Let A be a bounded operator in complex Hilbert space. Prove that \sigma(Exp(A))=Exp(\sigma(A)).



It is known, that \sigma(P(A))=P(\sigma(A)), where P is a polynomial.
In addition, if an operator A has a bounded inverse, then for any operator B such that ||B||<1/||A^{-1}|| their sum A+B has a bounded inverse.


I managed to prove that \sigma(Exp(A))\supseteq Exp(\sigma(A)).
As
Exp(A)=I+A+\frac{A^2}{2}+\ldots,
let
P_n(x)=1+x+\cdots+\frac{x^n}{n!}
and
Q_n(x)=\frac{x^{n+1}}{(n+1)!}+\ldots.
Then ||Q_n(A)||\to 0.



Let \lambda\notin\sigma(Exp(A)). Then Exp(A)-\lambda I is invertible, and P_n(A)-\lambda I=Exp(A)-\lambda I-Q_n(A) is invertible for large n.
Moreover, P_n(A)-(\lambda+\epsilon)I is invertible for sufficiently small epsilon. So \lambda\notin Exp(\sigma(A)).
 
Last edited:
Physics news on Phys.org
No ideas...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top