Square of orthogonal matrix vanishes

Click For Summary
SUMMARY

The discussion centers on the properties of orthogonal matrices, specifically in the context of kinetic energy expressions in physics. The kinetic energy is expressed as $$T = \frac{1}{2} m (\dot{\vec{x}}^\prime)^2$$, where $$\dot{\vec{x}}^\prime$$ incorporates a rotation matrix $$R$$. It is established that the square of an orthogonal matrix, $$R^2$$, equals the identity matrix $$I$$, confirming that the dot product remains invariant under rotation. The conversation concludes with a derivation of the velocity transformation under rotation, demonstrating the relationship between angular velocity and the orthogonal matrix.

PREREQUISITES
  • Understanding of orthogonal matrices and their properties
  • Familiarity with kinetic energy equations in classical mechanics
  • Knowledge of vector calculus and dot products
  • Basic concepts of angular velocity and rotational dynamics
NEXT STEPS
  • Study the properties of orthogonal matrices in linear algebra
  • Explore the derivation of kinetic energy in rotating reference frames
  • Learn about the implications of angular velocity in physics
  • Investigate the relationship between rotation matrices and transformations in mechanics
USEFUL FOR

Physicists, mechanical engineers, and students studying classical mechanics, particularly those interested in rotational dynamics and the mathematical foundations of motion.

PhysicsRock
Messages
121
Reaction score
19
Homework Statement
We consider a coordinate transform where ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## with a constant ##\vec{a}##.
Write the lagrangian in terms of ##\vec{x}## and ##\dot{\vec{x}}##.
Relevant Equations
Velocity in terms of ##\dot{\vec{x}}## and ##\vec{x}##: ##\dot{\vec{x}}^\prime = R \left[ \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) \right]##.
Lagrangian function ##L = T - V##.
I found a the answer in a script from a couple years ago. It says the kinetic energy is

$$
T = \frac{1}{2} m (\dot{\vec{x}}^\prime)^2 = \frac{1}{2} m \left[ \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) \right]^2
$$

However, it doesn't show the rotation matrix ##R##. This would imply that ##R^2 = R \cdot R = I##. ##R## is an orthogonal matrix, but I'm pretty sure that the square of such is not always equal to the identity.

So then how come the matrix doesn't show up in the expression for the kinetic energy?
 
Physics news on Phys.org
PhysicsRock said:
So then how come the matrix doesn't show up in the expression for the kinetic energy?
The dot product ##\vec{z}\cdot\vec{z}## is shorthand for the matrix multiplication ##z^{T}z##, where ##z## is a column vector. So under a rotation by ##R##, $$\vec{z\,}'\equiv\overleftrightarrow{R}\cdot\vec{z}=R\,z\Rightarrow\vec{z}\,'\cdot\vec{z}\,'=\left(z'\right)^{T}z'=z^{T}R^{T}R\,z=z^{T}z=\vec{z}\cdot\vec{z}$$since ##R## is an orthogonal matrix. (This expresses the invariance of the dot-product under rotations.)
 
PhysicsRock said:
Homework Statement: We consider a coordinate transform where ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## with a constant ##\vec{a}##.
Write the lagrangian in terms of ##\vec{x}## and ##\dot{\vec{x}}##.
Relevant Equations: Velocity in terms of ##\dot{\vec{x}}## and ##\vec{x}##: ##\dot{\vec{x}}^\prime = R \left[ \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) \right]##.
Lagrangian function ##L = T - V##.
Diffenciating ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## by time, I get
\dot{\vec{x}^\prime(t)} = \dot{R(t)} (\vec{a} + \vec{x}(t))+R(t) \dot{\vec{x}(t)}
. Is it same as your relevant equation ?
 
renormalize said:
The dot product ##\vec{z}\cdot\vec{z}## is shorthand for the matrix multiplication ##z^{T}z##, where ##z## is a column vector. So under a rotation by ##R##, $$\vec{z\,}'\equiv\overleftrightarrow{R}\cdot\vec{z}=R\,z\Rightarrow\vec{z}\,'\cdot\vec{z}\,'=\left(z'\right)^{T}z'=z^{T}R^{T}R\,z=z^{T}z=\vec{z}\cdot\vec{z}$$since ##R## is an orthogonal matrix. (This expresses the invariance of the dot-product under rotations.)
That makes sense. Thank you.
 
anuttarasammyak said:
Diffenciating ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## by time, I get
\dot{\vec{x}^\prime(t)} = \dot{R(t)} (\vec{a} + \vec{x}(t))+R(t) \dot{\vec{x}(t)}
. Is it same as your relevant equation ?
Yes. Allow me to demonstrate. We start with your expression and factor out an ##R##. Since it is orthogonal that leads us to

$$
\dot{\vec{x}}^\prime = R \left[ \dot{\vec{x}} + R^T \dot{R} ( \vec{a} + \vec{x} ) \right]
$$

Last semester, we derived that ##(R^T \dot{R})_{ij} = - \epsilon_{ijk} \omega_k##, where ##\omega_k## are the components of angular velocity. Now we plug that in and get

$$
\dot{x}^\prime_{i} = R_{ij} ( \dot{x}_j + (R^T \dot{R})_{jk} (a_k + x_k) )
= R_{ij} ( \dot{x}_j + (-\epsilon_{jkl} \omega_l) (a_k + x_k) )
$$

Recall the definition of the vector product ##(\vec{a} \times \vec{b})_i = \epsilon_{ijk} a_j b_k##. With that we obtain

$$
\dot{\vec{x}}^\prime = R ( \dot{\vec{x}} - (\vec{a} + \vec{x}) \times \vec{\omega} )
$$

Since the vector product is antisymmetric, we can alternatively write

$$
\dot{\vec{x}}^\prime = R ( \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) )
$$

And we're done.
 
  • Like
Likes   Reactions: anuttarasammyak

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K