Squeeze Theorem for derivatives

benf.stokes
Messages
67
Reaction score
0

Homework Statement



Show, with appropriate examples, that the conditions g(x) < f(x) < h(x) and derivative(g(x0))=derivative(h(x0)) = m does not imply derivative(f(x0)) = m or even exists. And with some additional condition.

Homework Equations



derivative g(x) = lim(h tends to zero) (g(x+h)-g(x))/h

The Attempt at a Solution



How do I even get started?
Thanks
 
Physics news on Phys.org
Start by identifying the simplest function you can think of which has no derivative at, say, x = 0.

By the way, the problem seems almost too simple as stated. But what do you mean "and some additional condition"? Are there some more constraints on g, f, and/or h? E.g., do their values have to be close to each other at x_0?
 
Thanks for the reply. The problem does require a formal proof although I know it may not appear because of my sloppy translation.
And the aditional conditional means that something other than g < f < h is required for deriv g < deriv f = deriv h = m
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top