Standing waves in a funny Potential distribution

frankcastle
Messages
10
Reaction score
0

Homework Statement



The description of the potential distribution is given in the attached image.
The particle arrives from the left with E>V0.

write the solutions to the S.E in regions x<o and x between o and a


Homework Equations


I believe psi(x)= e^ikx+Re^-ikx in x<0
and psi(x)=Ae^iqx+Be^-iqx for x b/w o and a.


The Attempt at a Solution


My question is, since there is complete reflection occurring at x=a, can A=B in region x b/w 0 and a? If so, there will be destructive interference in the region, giving R=1, which is what we are asked to prove in the question. Is this approach of equating coefficients of wave traveling in +-x directions in this region applicable?
 

Attachments

  • qphy.jpg
    qphy.jpg
    3.9 KB · Views: 406
Physics news on Phys.org
The potential:
V=0 for x<0
V=V0 for 0<x<a
V->infinity for x>a
frankcastle said:
write the solutions to the S.E in regions x<o and x between o and a

I believe psi(x)= e^ikx+Re^-ikx in x<0
and psi(x)=Ae^iqx+Be^-iqx for x b/w o and a.
You have one boundary condition at x=a that relates A and B. You have two boundary conditions at x=0 that relate A, B and R. Once you have determined k and q (which I'm assuming you know how to do), then I believe you simply apply these boundary conditions.
 
thanks turin, I understand the problem well. My question is regarding the relation of the coefficients, A and B; with the respective intensities.

Since R=1 at x=a, I would immediately assume that B=A
instead of having to use Boundary conditions to find coefficients.
Would this be correct logic?
 
frankcastle said:
Since R=1 at x=a, I would immediately assume that B=A
instead of having to use Boundary conditions to find coefficients.
Would this be correct logic?
No. You're contradicting yourself. You specified R for x<0, and now you want to talk about R at x=a, which doesn't even make sense, unless this is somehow a different R than the coefficient of the exponential that you originally gave. It's been a while since I solved one of these problems, so I can't remember if it should turn out that A=B is, in fact true; however, your logic to arrive at this conclusion is flawed.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top