Star collapse in general relativity — pressure as a function of star radius

Lilian Sa
Messages
18
Reaction score
2
Homework Statement
How can I find the pressure as a function of the radius of a star that have a constant energy density, spherical symmetric, its initial radius is R and the total mass is M?
Relevant Equations
TOV equations.
##ds^2=-e^{\nu(r)}dt^2+r^{\lambda(r)}dr^2+r^2d\Omega^2##
What I've done is using the TOV equations and I what I found at the end is:
##e^{[\frac{-8}{3}\pi G\rho]r^2+[\frac{16}{9}(G\pi\rho)^{2}]r^4}-\rho=P(r)##
so I am sure that this is not right, if someone can help me knowing it I really apricate it :)
 
Physics news on Phys.org
Lilian Sa said:
How can I find the pressure as a function of the radius of a star that have a constant energy density, spherical symmetric, its initial radius is R and the total mass is M?
I haven't worked this through. The TOV equations require gravitational equilibrium, so I presume that's what you're interested and not the actual collapse (which I have no idea how to deal with)? You'd need a barotropic equation of state ##p = p(\rho)##; does the problem statement supply one? Then you solve the coupled system\begin{align*}

\frac{dm}{dr} &= 4\pi r^2 \rho \\

\frac{dp}{dr} &= \frac{-(p+\rho)(m + 4\pi r^3 p)}{r(r-2m)}

\end{align*}in ##m(r)## and ##p(r)##. You can set ##m(0) = 0##
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top