Star collapse in general relativity — pressure as a function of star radius

Lilian Sa
Messages
18
Reaction score
2
Homework Statement
How can I find the pressure as a function of the radius of a star that have a constant energy density, spherical symmetric, its initial radius is R and the total mass is M?
Relevant Equations
TOV equations.
##ds^2=-e^{\nu(r)}dt^2+r^{\lambda(r)}dr^2+r^2d\Omega^2##
What I've done is using the TOV equations and I what I found at the end is:
##e^{[\frac{-8}{3}\pi G\rho]r^2+[\frac{16}{9}(G\pi\rho)^{2}]r^4}-\rho=P(r)##
so I am sure that this is not right, if someone can help me knowing it I really apricate it :)
 
Physics news on Phys.org
Lilian Sa said:
How can I find the pressure as a function of the radius of a star that have a constant energy density, spherical symmetric, its initial radius is R and the total mass is M?
I haven't worked this through. The TOV equations require gravitational equilibrium, so I presume that's what you're interested and not the actual collapse (which I have no idea how to deal with)? You'd need a barotropic equation of state ##p = p(\rho)##; does the problem statement supply one? Then you solve the coupled system\begin{align*}

\frac{dm}{dr} &= 4\pi r^2 \rho \\

\frac{dp}{dr} &= \frac{-(p+\rho)(m + 4\pi r^3 p)}{r(r-2m)}

\end{align*}in ##m(r)## and ##p(r)##. You can set ##m(0) = 0##
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top