Statistical physics: Landau theory liquid crystal (2D)

rolotomassi
Messages
52
Reaction score
0

Homework Statement



A simple model for liquid crystals confined to 2 dimensions is o assume each molecule can only align in one of 2 perpendicular directions. To construct a landau model its convenient to define order parameter, s :

s = 2 ( Np - 0.5Nt ) / Nt
Np - number molecules aligned parallel to some director
Nt - Np - number of molecules aligned perpendicular to some director
Nt - total number of molecules

The free energy is F = a + bs + cs^2 + ds^3 + es^4 , determine appropriate values of expressions for a, b, c, d and e for liquid crystal confined to 2 dimensions if a transition is observed from randomly aligned to oriented at some temperature T_critical.

Homework Equations

The Attempt at a Solution



I work out the order parameter for 3 configurations : s=1 (all parallel wrt director), s= -1 (all perpendicular wrt director) and s=0 (randomly aligned)

The free energy should be the same regardless of whether they are aligned parallel or perpendicular w.r.t some arbitrary direction so there should be symmetry for s = +/- 1. This means the coefficients of odd powers of 's' are zero.
F(s) is a quartic so will have 2 stable equilibria and 1 unstable equilibrium. I differentiate and get
s = 0 or s^2 = -c/2e

From what I've seen of other similar problems I am thinking that the phase transition occurs when we go to a stable equilibrium point i.e - s^2 ---> + s^2 when 'c' changes sign. This happens at T_critical so let c(T) = c(T-Tc).
Not even sure if this is right or where I go from here[/B]
 
Reading it back now it is abit wordy isn't it.
Yes I have solved it its okay. Was half way there.
 
Hi, I'm stuck trying to solve a very similar question to this. Any chance you remember your solution?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top