MaxManus
- 268
- 1
Homework Statement
Assume z_1, ..., z_m are iid,z_i = μ+\epsilon_i
\epsilon_i]is N(0,σ^2)
Show that
f(z; μ) = g(\bar{z}; μ)h(z)
where h(·) is a function not depending on μ.
Homework Equations
The Attempt at a Solution
Now z is normal distributed with mean my and variance sigma^2
f(z,\mu) = \frac{1}{\sigma^2 \sqrt{2 \pi}} e^{-\frac{(z-\mu)^2}{2 \sigma^2}}
f(z; μ) = \prod_{i=1}^m \frac{1}{\sigma^2 \sqrt{2 \pi}} e^{-\frac{(z_i-\mu)^2}{2 \sigma^2}}
f(\bf{z},\mu) = (\frac{1}{\sigma^2 \sqrt{2 \pi}})^m \prod_{i=1}^m e^{-\frac{(z_i-\mu)^2}{2 \sigma^2}}
but how do I go from here to
f(z; μ) = g(\bar{z}; μ)h(z)
And am I in the right track?
Last edited: