sanctifier
- 58
- 0
Homework Statement
X_{1},\; X_{2},\;\;...,\;\; X_{n} are sampled from a normal random variable x of mean \mu =0 and variance 4 \sigma ^2
Question: What is the efficient estimator of \sigma ^2
Homework Equations
Nothing Special.
The Attempt at a Solution
When \sigma is given, the joint probability density function (p.d.f.) of X_{1},\; X_{2},\;\;...,\;\; X_{n} is
f(X| \sigma ^2) = \frac{1}{( \sqrt[2]{2 \pi }2 \sigma )^n}exp\{- \frac{1}{2}\sum_{i=1}^{n} \frac{{X_i}^2}{4\sigma^2} \}
Where X denotes a vector of components X_{1},\; X_{2},\;\;...,\;\; X_{n}.
Let \lambda (X|\sigma^2) = -n*ln( \sqrt{2 \pi } 2\sigma)- \frac{1}{2}\sum_{i=1}^{n} \frac{{X_i}^2}{4\sigma^2}
Namely, \lambda (X|v) = -n*ln( \sqrt{8 \pi v} )- \frac{1}{2}\sum_{i=1}^{n} \frac{{X_i}^2}{4v} when v=\sigma^2
\lambda' (X|v) = \frac{d\lambda (X|v)}{dv} = - \frac{n}{2v} + \frac{n\overline{X} _n}{2v^2}
Where \overline{X} _n = \sum_{i=1}^{n} X_i / n
Hence, the efficient estimator of \sigma^2 is
\overline{X} _n = \frac{2v^2}{n} \lambda' (X|v) + v = \frac{2\sigma^4}{n}\lambda' (X|\sigma^2) + \sigma^2
Is this correct?
Last edited: