Understanding Z = -sin(t) in Stokes Theorem: A Simple Explanation

Miike012
Messages
1,009
Reaction score
0
I am wondering why z = -sin(t) and not sin(t)
 

Attachments

  • gggggggg.jpg
    gggggggg.jpg
    14.6 KB · Views: 490
Physics news on Phys.org
nevermind i think i know. I think its because as you rotate around the circle in the counter clockwise direction you go from the x-axis to the negative z-axis.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top