wil3
- 177
- 1
Let's assume that I have a surface defined parametrically by a vector \mathbf{\<br />
r}(r,\theta)
Is it acceptable to simplify the Stokes theorum surface integral to:
\iint\limits_D\,\nabla \times f \cdot\!(r_r\times\!r_\theta) \,\, \!r \mathrm{d}r\,\mathrm{d}\theta
Where r_r and r_theta are the derivatives of the parametrized vector with respect to r and theta. In other words, I canceled out the magnitude of the normal vector with the 3D jacobian that turns the flat area element into a 3D area element. It seems to me like this should work, but I got the wrong answer to a problem, and I couldn't find an error in my work, leading me to suggest I was doing this wrong.
Thank you very much for any advice. Happy Christmas.
Is it acceptable to simplify the Stokes theorum surface integral to:
\iint\limits_D\,\nabla \times f \cdot\!(r_r\times\!r_\theta) \,\, \!r \mathrm{d}r\,\mathrm{d}\theta
Where r_r and r_theta are the derivatives of the parametrized vector with respect to r and theta. In other words, I canceled out the magnitude of the normal vector with the 3D jacobian that turns the flat area element into a 3D area element. It seems to me like this should work, but I got the wrong answer to a problem, and I couldn't find an error in my work, leading me to suggest I was doing this wrong.
Thank you very much for any advice. Happy Christmas.