Stress tensor from action in Landau-Ginzburg field theory

AI Thread Summary
The discussion focuses on deriving the stress tensor for a Landau-Ginzburg theory from the Hamiltonian using functional derivatives with respect to the metric. The energy-momentum tensor is expressed in terms of the Hamiltonian density, and the user seeks clarification on how to obtain the correct form of the stress tensor when differentiating with respect to the Euclidean metric. Key points include the importance of the factor ##\sqrt{-g}## in the functional derivative and the evaluation of derivatives involving the metric. The conversation highlights the need for careful treatment of indices and the relationship between the metric and its variations. Overall, the participants aim to clarify the steps necessary to derive the stress tensor accurately.
ChrisPhys
Messages
6
Reaction score
0
I would appreciate any help with the following question:

I know that for relativistic field theories, the stress tensor can be obtained from the classical action by differentiating with respect to the metric, as is explained on the wikipedia page

http://en.wikipedia.org/wiki/Stress–energy_tensor
If I understand this correctly, the energy-momentum tensor is defined as the functional derivative of the action w.r.t. the metric,

##T^{\mu \nu} = \frac{2}{\sqrt{-g}} \frac{\sqrt{-g}\delta \mathcal L}{\delta g_{\mu\nu}}.##

Here ##g_{\mu \nu}## is the standard Minkowski metric in the case of special relativity. (I need to add here that my relativity background is not good, and that I don't understand this derivation very well).

I was wondering whether one can do this for a Landau-Ginzburg theory for some (scalar) order parameter field. In this case the stress tensor is defined in terms of partial derivatives of the Hamiltonian density,

##T_{ij} = \delta_{ij} \mathcal H - \partial_i \frac{\partial \mathcal H}{\partial (\partial_j \phi)}##

where the Hamiltonian is

##H = \int d\vec x \mathcal H.##

E.g. consider a simple Gaussian Hamiltonian

##H = \int d\vec x \; [\nabla \phi(\vec x)]^2##

whose corresponding stress tensor is

## T_{ij} = \frac 1 2 \delta_{ij} \nabla^2 \phi - \partial_i \phi \partial_j \phi. ##

Could anyone perhaps help me to show in detail how (or whether) I can obtain this stress tensor from the Hamiltonian by differentiation in the case of the Gaussian Hamiltonian with respect to the Euclidean metric? In particular, how do I obtain the relative minus sign between the two terms in the stress tensor?

Any help would be appreciated.
 
Last edited:
Physics news on Phys.org
It is important that the ##\sqrt{-g}## factor is under the functional derivative,
$$T^{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu \nu}} \left (\sqrt{-g} \mathcal{L} \right ).$$
This implies that for the potential part of the Lagrangian density
$$\mathcal{L}_I=-V(\phi)$$
you get the contribution
$$T_I^{\mu \nu} =-V(\phi) \frac{2}{\sqrt{-g}} \frac{\delta}{\delta g_{\mu \nu}} \left (\sqrt{-g} \right ) =+g^{\mu \nu} V(\phi),$$
because
$$\frac{\delta \sqrt{-g}}{\delta g_{\mu \nu}} =-\frac{1}{2 \sqrt{-g}} \frac{\delta g}{\delta g_{\mu \nu}}=-\frac{\sqrt{-g}}{2} g^{\mu \nu},$$
because ##g^{\mu \nu}## is the inverse of ##g_{\mu \nu}##.

Note that all this is given in terms of the east-coast metric with mostly positive signs when in diagonal form.
 
Hi @vanhees71

Thanks for your reply. Does your statement also hold for a Euclidean metric? Specifically, the problem I'm considering is on 3-D Euclidean space, where I guess all factors of ##\sqrt g ## are trivial, so my hamiltonian is

##H = \int d\vec x [\nabla \phi (\vec x) ] ^2 ##,

with ##\vec x \in \mathbb R ^3##. So what I am trying to figure out is whether I can retrieve the stress tensor ##T_{ij}## that I wrote down in my first post from this hamiltonian by differentiating with respect to ##g_{ij} = \delta_{ij}##, with ##i,j \in \{1,2,3\}##.

I suppose one could write for my hamiltonian that with ##g_{ij} = \delta_{ij}## that

##H = \int d\vec x \sqrt{g} [\nabla \phi (\vec x) ] ^2 = \int d\vec x \sqrt{g} g^{ij} (\nabla \phi)_i ( \nabla \phi)_j , ##

i.e.,

## T_{ij} \propto \frac{\delta }{\delta g_{ij}} \big( \sqrt{g} g^{ij} (\nabla \phi)_i ( \nabla \phi)_j \big). ##

If I apply the product rule to the derivative, I guess I am quite close to obtaining ##T_{ij}## from my first post, but formally I'm not quite sure how to fill in the steps... Any help with this last bit would be really appreciated.

Thanks!
 
Here the metric is varied. So it doesn't make a difference whether you have a Euclidean (Wick rotated) metric or the original space-time metric.
 
Thanks @vanhees71

So my problem reduces to evaluating two functional derivatives:

1)
## \frac{\delta \sqrt{g} }{\delta g_{ij}} ##, which you evaluate above. Could you explain your result to me?

2)
## \frac{\delta g_{ij} }{\delta g_{ij}} ## which I assume is equal to 1 or otherwise some functional delta-function?

Sorry, I somehow have no intuition for differentiating a functional of the metric with respect to the metric.

These results combined should give what I am looking for :)

Thanks again.
 
This is a bit tedious since you derive with respect to two-indexed quantities, and one has to be careful with the indices, and how to understand it. You have to keep in mind that you should consider, e.g., the two quantities ##g_{12}## and ##g_{21}## as independent although of course the general metric is symmetric. So the formula you want is
$$\frac{\delta g_{\mu \nu}}{\delta g_{\rho \sigma}}=\delta_{\mu}^{\rho} \delta_{\nu}^{\sigma}.$$
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top