Subgroups and normal subgroups

  • Thread starter Thread starter math8
  • Start date Start date
  • Tags Tags
    Normal
math8
Messages
143
Reaction score
0
Let G be a group, let N be normal in G and let H be a subgroup of G. Assume that G/N and H are finite and that gcd(|G/N|,|H|)=1. Prove that H is a subgroup of N.

I was thinking about using Lagrange Theorem. and maybe using the fact that G may act on the set of left cosets (G/N) by conjugation.
and the find the kernel of that action and then maybe use the first isomorphism theorem.

But I don't get very far with that.
 
Physics news on Phys.org
H also acts on G/N by left multiplication. Furthermore, every element of H is in one of the the left cosets of N.
 
Maybe looking at G isn't the right way to go. What can you learn about H by studying the group G/N? What about N?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top