Substituting functions in limits

  • Thread starter Thread starter Arnoldjavs3
  • Start date Start date
  • Tags Tags
    Functions Limits
Arnoldjavs3
Messages
191
Reaction score
3

Homework Statement


I'm trying hard to understand as my professor hasn't taught(nor does my textbook) on how this works.

It is known that $$\lim_{x \to 0}\frac{f(x)}{x} = -\frac12$$

Solve
$$\lim_{x \to 1}\frac{f(x^3-1)}{x-1}.$$

Homework Equations

The Attempt at a Solution


OK.. so I do this:
$$\begin{align}\lim_{x \to 1}\frac{f(x^3-1)}{x-1} &= \lim_{x \to 1}\frac{f(x^3-1)}{x-1}\cdot\frac{x^2+x+1}{x^2+x+1} \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}(x^2+x+1) \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}\lim_{x\to 1}(x^2+x+1) \\ &= \lim_{u\to 0}\frac{f(u)}{u}(3) \end{align}$$
$$(3)(-1/2)$$

Now my question is... why is it that $$lim_{u \to 0}\frac{f(u)}{u} = \lim_{x \to 0}\frac{f(x)}{x} = -\frac12 $$

I thought that the limit changes when you substitute variables? So when we substitute ##u = x^3 -1## the limit becomes u approaches 0 as when you substitute x=1 into the above, you get u = 0. Am I wrong on this??

Note that the answer is -3/2.
 
Last edited:
Physics news on Phys.org
Arnoldjavs3 said:

Homework Statement


I'm trying hard to understand as my professor hasn't taught(nor does my textbook) on how this works.

It is known that $$\lim_{x \to 0}\frac{f(x)}{x} = -\frac12$$

Solve
$$\lim_{x \to 1}\frac{f(x^3-1)}{x-1}.$$

Homework Equations

The Attempt at a Solution


OK.. so I do this:
$$\begin{align}\lim_{x \to 1}\frac{f(x^3-1)}{x-1} &= \lim_{x \to 1}\frac{f(x^3-1)}{x-1}\cdot\frac{x^2+x+1}{x^2+x+1} \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}(x^2+x+1) \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}\lim_{x\to 1}(x^2+x+1) \\ &= \lim_{u\to 0}\frac{f(u)}{u}(3) \end{align}$$

Now my question is... why is it that $$lim_{u \to 0}\frac{f(u)}{u} = \lim_{x \to 0}\frac{f(x)}{x} = -\frac12 $$

I thought that the limit changes when you substitute variables? So when we substitute ##u = x^3 -1## the limit becomes u approaches 0 as when you substitute x=1 into the above, you get u = 0. Am I wrong on this??

Note that the answer is -3/2.
You may name the variable whatever you like:
Whether it's ##\lim_{u \to 0}\frac{f(u)}{u}\;## or ##\; \lim_{\text{ tree} \to 0}\frac{f(\text{tree})}{\text{tree}}\;## or ##\;\lim_{x \to 0}\frac{f(x)}{x}##

Or wasn't that the question and it's about the previous steps?
 
fresh_42 said:
You may name the variable whatever you like:
Whether it's ##\lim_{u \to 0}\frac{f(u)}{u}\;## or ##\; \lim_{\text{ tree} \to 0}\frac{f(\text{tree})}{\text{tree}}\;## or ##\;\lim_{x \to 0}\frac{f(x)}{x}##

Or wasn't that the question and it's about the previous steps?

I was asking why is it that lim u-> 0 f(u)/u = lim x -> 0 f(x)/x in the last step of the solution.
 
It is simply the same, identical. First, ##u## is simply an abbreviation of ##x^3-1##. But then we forget about the origin of ##u##, because it doesn't matter anymore. Once we have it, we can concentrate on the expression ##\lim_{u \to 0}\frac{f(u)}{u}## and we are free to rename it.
If it feels better for you, then how about changing the given condition for ##f## to ##\lim_{v \to 0}\frac{f(v)}{v}=-\frac{1}{2}## and substitute another time ##v=u## at the end of the proof?
 
  • Like
Likes Arnoldjavs3
fresh_42 said:
It is simply the same, identical. First, ##u## is simply an abbreviation of ##x^3-1##. But then we forget about the origin of ##u##, because it doesn't matter anymore. Once we have it, we can concentrate on the expression ##\lim_{u \to 0}\frac{f(u)}{u}## and we are free to rename it.
If it feels better for you, then how about changing the given condition for ##f## to ##\lim_{v \to 0}\frac{f(v)}{v}=-\frac{1}{2}## and substitute another time ##v=u## at the end of the proof?

If it is the same, then that's enough for me to know. Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top