Sum formula for the modified Bessel function

AI Thread Summary
The discussion centers on the evaluation of a sum formula for the modified Bessel function of the second kind, particularly its agreement with MATLAB's 'besselk' function. While the formula yields consistent results for real numbers, discrepancies arise when complex numbers are used. One participant suggests exploring alternative series expansions to resolve the issue, noting that their modified approach aligns with MATLAB's outputs for both real and imaginary inputs. They recommend examining the specific requirements of the function used in the original formula to identify potential complications with complex inputs. The conversation highlights the importance of understanding the nuances of mathematical functions in computational contexts.
Hanyu Ye
Messages
4
Reaction score
0
Hi, everybody. Mathematic handbooks have given a sum formula for the modified Bessel function of the second kind as follows
NumberedEquation1.gif

I have tried to evaluate this formula. When z is a real number, it gives a result identical to that computed by the 'besselk ' function in MATLAB. However, when z is a complex number, the two results don't agree. What's wrong? Thanks a lot.
 
Mathematics news on Phys.org
Hi Hanyu,
I looked into some other series expansions, and found this one...from wolfram.com. It looks almost exactly like the one you were using above except for the ##I_n(z)## in your post was replaced by another sum formula.
upload_2015-6-2_16-47-19.png
Using this in matlab, I was able to get the same results as besselk for a sample of real and imaginary points.
So...I would look into the requirements for the function ##I_n(z)## that you were using to see if there are complications from the imaginary input.

Below is how I input it into matlab:
[\code]
function A=Kest(n,z);
expand = 10;
sum1 = 0;
for k = 0 :expand
sum1 = sum1 + (z/2)^(2*k)/factorial(k)/factorial(k+n);
end
term1 = (-1)^(n-1)*log(z/2)*(z/2)^n*sum1;

sum2 = 0;
%if n==0
%else
for k = 0:n-1
sum2 = sum2+(-1)^k*factorial(n-k-1)/factorial(k)*(z/2)^(2*k);
end
%end
term2 = sum2*1/2*(z/2)^(-n);

sum3 = 0;
for k = 0 :expand
sum3 = sum3 + (psi(k+1)+psi(k+n+1))/factorial(k)/factorial(k+n)*(z/2)^(2*k);
end
term3 = sum3*(-1)^n/2*(z/2)^n;
A = term1+term2+term3;
[/code]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Back
Top