physstudent1
- 267
- 1
Homework Statement
F=<0,3,x^2> computer the surface integral over the hemisphere x^2 + y^2 + z^2 = 9
z greater than or equal to 0, outward pointing normal.
Homework Equations
The Attempt at a Solution
I don't know why I keep getting this problem wrong. The general formula for surface integrals of vector fields is \int\intF(\Phi(\theta,\phi)*(dot product) n(\theta,\phi) For a sphere the normal is defined in the chapter of my text as R^2 sin(\phi)<cos(\theta)sin(\phi),sin(\theta)sin(\phi),cos(\phi)> However in the solutions manual when they are setting up the Integral they just have the sin(\phi)<cos(\theta)sin(\phi),sin(\theta)sin(\phi),cos(\phi)> but no R^2 ? I was looking over a sample problem on Pauls online notes and he did include the R^2 when setting up the integral so I am a little confused They end up getting 9pi/4. Can anyone help this isn't a homework problem I am just studying for my final which is in a few days thanks a lot.