The surface you described is a regular value of ##f:\mathbb{R}^{3}\rightarrow \mathbb{R},(x,y,z) \mapsto (x^{5}y^{2} + 3x^{3}y^{4}z^{2}-5)^{2}##. Let ##p = (x_{0},y_{0},z_{0})\in f^{-1}(1)##. Consider the map ##F:U\rightarrow \mathbb{R}^{3}## given by ##F(x,y,z) = (x,y,f(x,y,z))##. Then, ##DF(p) = \begin{pmatrix}
1 & 0 & 0\\
0& 1 &0 \\
\partial_{x}f|_{p}& \partial_{y}f|_{p} & \partial_{z}f|_{p}
\end{pmatrix}##. If ##\nabla f## does not vanish identically on ##f^{-1}(1)## then this obviously has full rank and the inverse function theorem then guarantees that there exists a neighborhood ##V## of ##p## such that ##F:V\rightarrow F(V)## is a diffeomorphism. So as long as the gradient is nowhere vanishing, you have an explicit form for the parametrization by projecting onto the plane. All you have to do is check that the gradient doesn't vanish identically on the surface. This is a basic result from the classical theory of surfaces - see proposition 2 on page 59 of Do Carmo "Differential Geometry of Curves and Surfaces".