Taking partial derivative in polar coordinates

nigels
Messages
36
Reaction score
0
In a problem that requires converting from cartesian to polar coordinates, I need to take \frac{dr}{dx}. I tried doing it two different ways but getting two completely different answers..

Method 1:

r=\sqrt{x^2+y^2}

\frac{dr}{dx}=\frac{1}{2}\frac{1}{\sqrt{x^2+y^2}}2x \;\; = \frac{1}{r}r\cos\theta \;\; = \;\; \cos\theta


Method 2:

x=r\cos\theta

r=\frac{x}{\cos\theta}

\frac{dr}{dx} = \frac{1}{\cos\theta}


I know that Method 1 gives the correct answer. But, having not done derivations in a while, what's wrong with my steps in Method 2? Thanks a lot for your help!
 
Physics news on Phys.org
I claim that theta is a function of x and y, can you find what theta is then?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top