You can edit the title of the first post and add [solved] at the beginning.

tssuser
Messages
2
Reaction score
0
I'm confused by problem 2.31 in mathematical tools for physics.

Problem:
2.31 The Doppler effect for sound with a moving source and for a moving observer have different formulas. The Doppler
effect for light, including relativistic effects is different still. Show that for low speeds they are all about the same.

f' = f \frac{v - v_0}{v}, f' = f \frac{v}{v+v_s}, f' = f \sqrt{\frac{1-v/c}{1+v/c}}

The symbols have various meanings: v is the speed of sound in the first two, with the other terms being the velocity
of the observer and the velocity of the source. In the third equation c is the speed of light and v is the velocity of the
observer. And no, 1 = 1 isn't good enough; you should get these at least to first order in the speed.Solution:
From the selected solutions:
f' = f(1-v_0/v), f' = f(1-v_s/v), f'=f(1-v/c)

Question:
Clearly I'm supposed to do a tailor expansion of something, but I'm unsure of which part of the original differential equation I'm supposed to expand. Also, whichever part I do expand I end up with a different result than the given solution, which makes me think I'm interpreting the equation wrong. My interpretation is:
f'(x) = \frac{v - v_0}{v} f(x)

Thanks for any help clearing this up.
 
Physics news on Phys.org
Yes, a Taylor expansion is the way to go. These are not differential equations though. The primes merely denote frequencies in different reference frames.
 
Thanks Jilang, that cleared things up for me. I suppose this is a difference between a "Math for Physics" text and a pure mathematics one.

I'm new to the forum, is there a standard for marking questions and posts as [solved] ?
 
tssuser said:
Thanks Jilang, that cleared things up for me. I suppose this is a difference between a "Math for Physics" text and a pure mathematics one.

I'm new to the forum, is there a standard for marking questions and posts as [solved] ?
Hello tssuser. Welcome to PF !
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top