Temperature Required for Brass Plug and Iron Ring to Fit

AI Thread Summary
To determine the common temperature at which a brass plug will fit into an iron ring, the initial diameters at room temperature (20°C) are 8.755 cm for the plug and 8.745 cm for the ring. The coefficients of linear expansion are 10x10^-6 (°C)^-1 for brass and 12x10^-6 (°C)^-1 for iron. The problem requires calculating the temperature increase needed for the brass to expand sufficiently to fit into the iron ring. The calculations involve using the formula for linear expansion, which relates the change in diameter to the change in temperature. Assistance is needed for the specific calculations and methodology to arrive at the correct temperature.
Jayhawk1
Messages
44
Reaction score
0
A brass plug is to be placed in a ring made of iron. At room temperature (20oC), the diameter of the plug is 8.755 cm and that of the inside of the ring is 8.745 cm. They must be brought to what common temperature (in Co) in order to fit? The coefficient of linear expansion for brass is 10x10-6(Co)-1 and that for iron is 12x10-6(Co)-1.

I don't know what to do with this... I know I have to subtract and divide some of these numbers, but I have no clue as to how to do it exactly. I need help please! Thank you.,
 
Physics news on Phys.org
Jayhawk1 said:
A brass plug is to be placed in a ring made of iron. At room temperature (20oC), the diameter of the plug is 8.755 cm and that of the inside of the ring is 8.745 cm. They must be brought to what common temperature (in Co) in order to fit? The coefficient of linear expansion for brass is 10x10-6(Co)-1 and that for iron is 12x10-6(Co)-1.

I don't know what to do with this... I know I have to subtract and divide some of these numbers, but I have no clue as to how to do it exactly. I need help please! Thank you.,

https://www.physicsforums.com/showthread.php?p=543205#post543205
 
Last edited:
I still am confused...

I need more help please.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top