Calculating Tennis Ball Trajectory: Force and Integration Explained

diegorodriguez
Messages
1
Reaction score
0
1. How to get x,y positions for a tennis ball at each time t given total force exerted?2. We consider Drag force D, Lift Force L and Gravitation force W

D=1/2*(0.55+1/((22.5+4.2*(v/(w*R))^2.5)^0.4))*pi*R^2*d*v^2
L=1/2*(1/(2+(v/(w*R))))*pi*R^2*d*v^2
W=m*g
as described in
http://www.physics.usyd.edu.au/~cross/TRAJECTORIES/42. Ball Trajectories.pdf

where v, speed; w, angular speed;R, radius;d, density;m, mass

3. I suppose we need to integrate force twice on time t for Fx and Fy given a Serve Angle Ro and Serve Speed vi, but how?
 
Physics news on Phys.org
As far as I am aware, there is no analytic solution for 2D motion with drag.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top