Textbook 'The Physics of Waves': Varying Force Amplitude

  • Thread starter Thread starter brettng
  • Start date Start date
  • Tags Tags
    Physics Waves
AI Thread Summary
In the discussion regarding Problem 2.3 from "The Physics of Waves," participants explore the complex equation of motion derived from a time-dependent force amplitude. The solution involves using a complex form for the amplitude, leading to expressions for the real displacement that account for nonzero frequency differences. Clarification is sought on the significance of the condition "for δ nonzero to leading order in δ/ω₀," which relates to approximations near resonance. Participants also discuss the applicability of superposition in solving the differential equation by treating each harmonic driving force separately. The overall consensus is that the approach taken is valid, and solutions can be derived using the principles outlined in the textbook.
brettng
Messages
17
Reaction score
0
Homework Statement
Problem 2.3 (See screen capture below)
Relevant Equations
$$\frac{d^2 z(t)}{dt^2} + \Gamma \frac{d z(t)}{dt} + \omega^2_0 z(t) = \frac{\mathcal{F} (t)}{m}$$
Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

Chapter 2 - Problem 2.3 [Page 52] (see screen capture below)
Problem 2.3 [Page 52].JPG


Question: In Problem 2.3, I have proved the hint equation, and it leads to the complex equation of motion to become $$\frac{d^2 z(t)}{dt^2} + \omega^2_0 z(t) = \frac{f_0}{2m} \left( e^{-i \delta t} + e^{i \delta t} \right) e^{-i \omega_0 t}$$

Then, I try a complex solution as usual, but this time with a time-dependent amplitude, ##z(t) = \mathcal{A}(t) e^{-i \omega_0 t}##. This could simplify the complex equation of motion to $$\frac{d^2 \mathcal{A}(t)}{dt^2} - i2 \omega_0 \frac{\mathcal{A}(t)}{dt} = \frac{f_0}{2m} \left( e^{-i \delta t} + e^{i \delta t} \right) = \frac{f_0}{m} \cos (\delta t)$$

At this stage, I try a complex form for the time-dependent amplitude ##\mathcal{A}(t) = A\cos (\delta t) + iB \sin (\delta t)##. The complex equation of motion would further be simplified into real and imaginary parts: $$(-A \delta^2 + 2 \omega_0 \delta B) \cos (\delta t) + (-B \delta^2 + 2 \omega_0 A \delta) \sin (\delta t) = \frac {f_0}{m} \cos (\delta t)$$

By setting the following equations:
$$(-A \delta^2 + 2 \omega_0 \delta B) \cos (\delta t) = \frac {f_0}{m} \cos (\delta t)$$

and

$$(-B \delta^2 + 2 \omega_0 A \delta) \sin (\delta t) = 0$$

We can solve that ##A = \frac {f_0}{m} \left( \frac {1}{4 \omega^2_0 - \delta^2} \right)## and ##B = \frac {2 \omega_0 f_0}{m \delta} \left( \frac {1}{4 \omega^2_0 - \delta^2} \right)##.

Finally, by using ##z(t) = \left[ A\cos (\delta t) + iB \sin (\delta t) \right] \left[ \cos (\omega_0 t) - i \sin (\omega_0 t) \right]##, we can solve the exact real displacement for nonzero ##\delta## :
$$x(t) = \frac {f_0 \cos (\delta t)}{m \left( {4 \omega^2_0 - \delta^2} \right)} \cos (\omega_0 t) + \frac {2 f_0 \omega_0 \sin (\delta t)}{m \delta \left( {4 \omega^2_0 - \delta^2} \right)} \sin (\omega_0 t)$$

Therefore, answering the question,
$$\alpha (t) = \frac {f_0}{m \left( {4 \omega^2_0 - \delta^2} \right)} \cos (\delta t)$$

and

$$\beta (t) = \frac {2 f_0 \omega_0}{m \delta \left( {4 \omega^2_0 - \delta^2} \right)} \sin (\delta t)$$.


Question 1: Do I get the correct answer for this Problem question?

Question 2: What does the meaning of "for ##\delta## nonzero to leading order in ##\delta / \omega_0##" as shown in the problem question (see the screen capture)? Because in my approach, I did not use this criteria and I could find the exact solution for nonzero ##\delta##.

Question 3: In simple cases (i.e. sinusoidal force with constant amplitude; e.g. ##f_0 e^{-i \omega_0 t}##), we could try the solution by directly copying the force complex component (e.g. ##A(t) e^{-i \omega_0 t}##) as demonstrated in Chapter 2 of the reference book. In my approach above, it shows that we could not use such technique directly, just because the amplitude is also time-dependent (which makes the time derivative parts complicated). Therefore, we need to use some slightly different approach for this Problem case. Does my view correct?
 
Physics news on Phys.org
brettng said:
Question 1: Do I get the correct answer for this Problem question?
Your work looks correct. You have found an exact expression for a particular solution of the differential equation. To this particular solution, you can add the general solution of the associated homogeneous differential equation to get the general solution for this problem. It will contain two arbitrary constants that are determined by initial conditions. Since there is no damping in this problem, the solutions to the associated homogeneous differential equation do not decay with time.

brettng said:
Question 2: What does the meaning of "for ##\delta## nonzero to leading order in ##\delta / \omega_0##" as shown in the problem question (see the screen capture)? Because in my approach, I did not use this criteria and I could find the exact solution for nonzero ##\delta##.
I guess they want you to find an approximate result that holds when the system is near resonance ( ##\delta## small). For example, if ##\delta / \omega_0 \ll 1## you can simplify the denominators in your result. Also, if ##\delta \, t \ll 1##, you can simplify some of the trig functions and see how the amplitude of the oscillations grows with time initially.

brettng said:
Question 3: In simple cases (i.e. sinusoidal force with constant amplitude; e.g. ##f_0 e^{-i \omega_0 t}##), we could try the solution by directly copying the force complex component (e.g. ##A(t) e^{-i \omega_0 t}##) as demonstrated in Chapter 2 of the reference book. In my approach above, it shows that we could not use such technique directly, just because the amplitude is also time-dependent (which makes the time derivative parts complicated). Therefore, we need to use some slightly different approach for this Problem case. Does my view correct?
In this problem, the total driving force is a superposition of two harmonic driving forces: $$\cos \omega_0 t \cos \delta t = \frac 1 2 \textrm{Re} \left( e^{-i(\omega_0 + \delta)t} + e^{-i(\omega_0 - \delta)t}\right).$$ Since your differential equation is linear, you could find the solution by superposition of the solutions for each harmonic driving force acting alone. This way, you can use the text's solution for a harmonic driving force.
 
Thank you for your reply TSny!

TSny said:
Since your differential equation is linear, you could find the solution by superposition of the solutions for each harmonic driving force acting alone. This way, you can use the text's solution for a harmonic driving force.
In this case, do you mean that I could try the superpostion solutions with ##Ae^{-i (\omega_0 + \delta) t}## and ##Be^{-i (\omega_0 - \delta) t}##?
 
brettng said:
In this case, do you mean that I could try the superpostion solutions with ##Ae^{-i (\omega_0 + \delta) t}## and ##Be^{-i (\omega_0 - \delta) t}##?
Yes. Solve the two differential equations $$\ddot z_1 + \omega_0^2 z_1 = \frac{f_0}{2m}e^{-i\omega_1 t} \,\,\,\,\,\,\,\, \textrm{and} \,\,\,\,\,\,\,\, \ddot z_2 + \omega_0^2 z_2 = \frac{f_0}{2m} e^{-i\omega_2 t},$$ where ##\omega_1 = \omega_0 + \delta## and ##\omega_2 = \omega_0 - \delta##.

Then, ##x(t) = \textrm{Re}\left[z_1(t) + z_2(t) \right]##.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top