The case that has the highest torque on the loop

  • Thread starter Thread starter Fatima Hasan
  • Start date Start date
  • Tags Tags
    Loop Torque
Click For Summary

Homework Help Overview

The discussion revolves around calculating the torque on a current loop in a magnetic field, specifically focusing on the conditions under which the torque is maximized or minimized. The subject area includes concepts from electromagnetism, particularly the relationship between current, magnetic fields, and torque.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants analyze different scenarios for torque based on the angle between the magnetic field and the current loop. There are attempts to apply the torque formula and questions about the correct interpretation of angles in relation to the magnetic field and current direction.

Discussion Status

Some participants have provided clarifications regarding the angle used in the torque calculations, indicating that the angle should be between the magnetic field and the loop's normal vector. There is ongoing exploration of how to properly account for the magnetic moment of the loop as a whole rather than individual segments.

Contextual Notes

Participants are grappling with the implications of the angle in the torque equations and the geometry of the current loop. There is mention of potential confusion regarding the contributions of different sides of the loop to the overall torque calculation.

Fatima Hasan
Messages
315
Reaction score
14

Homework Statement


viber_image.jpg


Homework Equations


T = IAB sin θ ; θ is the angle between B and I.
T = μ × B

The Attempt at a Solution


A) T = IAB sin θ
T = √2 a b I B (θ = 45°)
B) T = 0 , because θ = 0
C) T = 0 , because θ =180°
D) T = μ × B
The direction of μ = -k , because the fingers points to the direction of current and the thump points to the direction of T.
T = (-k) × (-k)
=0
E) T = (k)×(k)
=0
So , the answer is 'A' .
Is it correct ?
 

Attachments

  • viber_image.jpg
    viber_image.jpg
    19.3 KB · Views: 718
Physics news on Phys.org
Unfortunately, no. :)

In your analysis of A, B, and C, you're only accounting for one side of each rectangle--the one labeled with an "I" in the diagram. In fact, in the formula ##| \mathbf{\tau} | = IAB \sin(\theta)##, the angle ##\theta## is meant to be taken between the current loop's normal vector and the magnetic field, *not* between the current and ##\mathbf{B}##. This is actually a consequence of the second formula you gave, ##\mathbf{\tau} = \mathbf{\mu} \times \mathbf{B}##, since the magnetic moment of a current loop is ##IA \mathbf{n}## (where ##\mathbf{n}## is the positively-oriented unit norm to the loop).

So actually, ##\theta = 90^{\circ}## in each of choices A, B, and C. Given this, what should the answer be?

EDIT: Your answer was correct, but your reasoning was not. Apologies for the lack of clarity.
 
Last edited:
VKint said:
So actually, ##\theta = 90^{\circ}## in each of choices A, B, and C.
And in 'D' and 'E' , ##\theta = 0^{\circ}## ?
 
VKint said:
In your analysis of A, B, and C, you're only accounting for one side of each rectangle--the one labeled with an "I" in the diagram.
Should I multiply by 4 ?
 
In D and E, ##\theta## is either ##0## or ##180^{\circ}##; in either case the torque vanishes.

Multiplying by 4 won't solve the problem. The issue is that the magnetic field makes a different angle with each of the sides of the loop. The correct way to account for this is by using the magnetic moment of the loop *as a whole* instead of trying to add up the torques on each side.
 
VKint said:
The correct way to account for this is by using the magnetic moment of the loop *as a whole*
T = μ × B
= I A B sin θ
The area is 2a*b and the angle is 90°.
So, T = 2 I a b B
Right ?
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
3K
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K