The case that has the highest torque on the loop

  • Thread starter Thread starter Fatima Hasan
  • Start date Start date
  • Tags Tags
    Loop Torque
AI Thread Summary
The discussion centers on calculating the torque on a current loop in a magnetic field using the formulas T = IAB sin θ and T = μ × B. The correct angle θ to use is between the loop's normal vector and the magnetic field, which is 90° for options A, B, and C, leading to a torque value of T = 2 I a b B. The initial reasoning presented was flawed as it only considered one side of the rectangle and did not account for the magnetic moment of the entire loop. Ultimately, the torque calculation should reflect the whole loop's magnetic moment rather than individual sides.
Fatima Hasan
Messages
315
Reaction score
14

Homework Statement


viber_image.jpg


Homework Equations


T = IAB sin θ ; θ is the angle between B and I.
T = μ × B

The Attempt at a Solution


A) T = IAB sin θ
T = √2 a b I B (θ = 45°)
B) T = 0 , because θ = 0
C) T = 0 , because θ =180°
D) T = μ × B
The direction of μ = -k , because the fingers points to the direction of current and the thump points to the direction of T.
T = (-k) × (-k)
=0
E) T = (k)×(k)
=0
So , the answer is 'A' .
Is it correct ?
 

Attachments

  • viber_image.jpg
    viber_image.jpg
    19.3 KB · Views: 702
Physics news on Phys.org
Unfortunately, no. :)

In your analysis of A, B, and C, you're only accounting for one side of each rectangle--the one labeled with an "I" in the diagram. In fact, in the formula ##| \mathbf{\tau} | = IAB \sin(\theta)##, the angle ##\theta## is meant to be taken between the current loop's normal vector and the magnetic field, *not* between the current and ##\mathbf{B}##. This is actually a consequence of the second formula you gave, ##\mathbf{\tau} = \mathbf{\mu} \times \mathbf{B}##, since the magnetic moment of a current loop is ##IA \mathbf{n}## (where ##\mathbf{n}## is the positively-oriented unit norm to the loop).

So actually, ##\theta = 90^{\circ}## in each of choices A, B, and C. Given this, what should the answer be?

EDIT: Your answer was correct, but your reasoning was not. Apologies for the lack of clarity.
 
Last edited:
VKint said:
So actually, ##\theta = 90^{\circ}## in each of choices A, B, and C.
And in 'D' and 'E' , ##\theta = 0^{\circ}## ?
 
VKint said:
In your analysis of A, B, and C, you're only accounting for one side of each rectangle--the one labeled with an "I" in the diagram.
Should I multiply by 4 ?
 
In D and E, ##\theta## is either ##0## or ##180^{\circ}##; in either case the torque vanishes.

Multiplying by 4 won't solve the problem. The issue is that the magnetic field makes a different angle with each of the sides of the loop. The correct way to account for this is by using the magnetic moment of the loop *as a whole* instead of trying to add up the torques on each side.
 
VKint said:
The correct way to account for this is by using the magnetic moment of the loop *as a whole*
T = μ × B
= I A B sin θ
The area is 2a*b and the angle is 90°.
So, T = 2 I a b B
Right ?
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top