The effective radiative temperature

  • Thread starter Thread starter Sunshin3
  • Start date Start date
  • Tags Tags
    Temperature
Sunshin3
Messages
5
Reaction score
0

Homework Statement



It is believed that in the Archeaneon (2.5-4 billion years ago) the sun’s radiative output was 30% less than it is today.

(i) What would the temperature of the sun have been at that time?

(ii) At what wavelength would the peak emission from the sun have been?

(iii) Ignoring the effects of the atmosphere, what would the temperature of the Earth have been at this time (i.e. the effective radiative temperature)? Assume that the Earth’s albedo was 0.3, the same as today.


Homework Equations


Boltzman equation
wiens law

The Attempt at a Solution


a)T= 4th root[5143824/(5.67*10^-8)]
t=5488.14K

b)detlamax=2897/5488.147
=0.527
 
Physics news on Phys.org
i need help with part c? please can some 1 help me ! asap! I am desperate! thank you!:)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top