The Exponential of an infinite sum

WastedGunner
Messages
8
Reaction score
1
I have a problem that arises in quantum field theory. It involves a problem in combinitorics and about the theory of connected graphs.

Essentially, I am trying to prove an identity involving an exponential of an infinite series with the ways to decompose an integer into the sum of integers.

\exp\left({\sum_{n=1}^\infty a_n}\right) = \sum_{n=0}^\infty \sum_{partitions} \prod_{i=1}^n \frac{a_i^{n_i}}{n_i ! }

Where the partition is over the ways to write n as a sum of integers.

http://en.wikipedia.org/wiki/Partition_(number_theory)

\sum_{i=1}^n in_i = n

If you expand out the first few terms of the right hand side, it looks good.

n=0 (I'm taking it to be 1 just to avoid confusion)

n=1

a_1

n=2

a_2 + \frac{1}{2!}a_i^2

cummulative

a_1 + \frac{1}{2!}a_1^2 + a_2

n=3

a_3 + a_1 a_2 + \frac{1}{3!} a_1^3

cummulative

a_1 + \frac{1}{2!}a_1^2 + \frac{1}{3!}a_1^3+ a_2 + a_1 a_2 + a_3

n=4

a_4 + a_1 a_3 +\frac{1}{2!} a_2^2 + \frac{1}{2!} a_1^2 a_2 + \frac{1}{4!} a_1^4

cummulative

a_1 + \frac{1}{2!}a_1^2 + \frac{1}{3!}a_1^3 + \frac{1}{4!}a_1^4 + a_2 + \frac{1}{2!} a_2^2 + a_1 a_2 + \frac{1}{2!}a_1^2 a_2 + a_3 + a_1 a_3 + a_4

As you can see, this seems to be systematically giving us the terms of the exponential.

Any thoughts on how to prove this generally?
 
Last edited:
Physics news on Phys.org
Suggestion: this is a math question. Why not move it there?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top