stunner5000pt
- 1,443
- 4
This is a question, not a homework problem, as i am currently studying for my test on classical mechanics
suppose H = \sum_{i} \dot{q_{i}}(p,q,t) p_{i} - L(p,q,t)
also i can prove that
dH = \sum_{i} (\dot{q_{i}}dp_{i} - \dot{p_{i}} dq_{i}) - \frac{\partial L}{\partial t} dt
suppose \frac{\partial L}{\partial t} = \frac{\partial H}{\partial t} = 0 then dH/dt = 0 i.e. H = E
now if i sub into the equation above i get
dH = \sum_{i} (\dot{q_{i}}dp_{i} - \dot{p_{i}} dq_{i})
how would i transform the above dH into dH/dt formally?
Do i simply integrate by parts to get H and then differentiate wrt t??
suppose H = \sum_{i} \dot{q_{i}}(p,q,t) p_{i} - L(p,q,t)
also i can prove that
dH = \sum_{i} (\dot{q_{i}}dp_{i} - \dot{p_{i}} dq_{i}) - \frac{\partial L}{\partial t} dt
suppose \frac{\partial L}{\partial t} = \frac{\partial H}{\partial t} = 0 then dH/dt = 0 i.e. H = E
now if i sub into the equation above i get
dH = \sum_{i} (\dot{q_{i}}dp_{i} - \dot{p_{i}} dq_{i})
how would i transform the above dH into dH/dt formally?
Do i simply integrate by parts to get H and then differentiate wrt t??
Last edited: