The Limit of a Complex Integral

Bachelier
Messages
375
Reaction score
0
Though it is not homework I posted this here, hopefully it'll get more action. Thanks

given \int_{\Lambda} \frac{e^{i w}}{w^2 + 1} \mathrm{d}w where ##w \in \mathbb{C}## with ##Im(w) \geqslant 0## and ##|w| = \xi##

want to evaluate the behavior of the Integral as ##\xi \rightarrow \infty##

So I have \left|\int_{\Lambda} \frac{e^{i w}}{w^2 + 1} \mathrm{d}w \right| \leqslant \int_{\Lambda} \left|\frac{e^{iw}}{w^2 + 1} \right| \mathrm{d}w

we have ##|exp(iw)| \leqslant 1##

so we're left with the denominator. We can get:

## \left| \frac{1}{w^2 + 1} \right| \leqslant \frac{1}{\xi^2 - i^2}##

Hence the integral is:

\left|\int_{\Lambda} \frac{e^{i w}}{w^2 + 1} \mathrm{d}w \right| \leqslant \frac{ \pi \xi}{\xi^2 + 1}

Thus it goes to ##0## if ##\xi## goes to ##\infty##
 
Last edited:
Physics news on Phys.org
What are you integrating over? By saying |w| > 0 IMw > 0 are you indicating we are integrating over a semicircle?
 
Jorriss said:
What are you integrating over? By saying |w| > 0 IMw > 0 are you indicating we are integrating over a semicircle?

Exactly, my region ##\Lambda## is where the Imaginary part of ##w## is positive. So we are in the upper half-circle.
 
And I am going to let ##\xi## explode, to use a Physicist term. :smile:
 
Nevermind. You're not enclosing the real axis.
 
Your estimate and conclusion look fine to me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top