alba_ei
- 38
- 1
The Same Integral... Two Different Answers!
\int \frac{\tan x}{\cos^5 x} \,dx
Solution 1
\int \frac{\tan x}{\cos^5 x} \,dx = \int \frac{\sin x}{\cos^6 x}
u = \cos x \,\,\,\, du = -\sin x \,dx
= -\int u^-^5 \,du = \frac{1}{4 u^4} + C
Answer 1: \frac{1}{4 \cos^4 x} + C
Solution 2
\int \frac{\tan x}{\cos^5 x} \,dx = \int \tan x \sec^4 x \,dx = \int \tan x (1 + \tan^2 x) \sec^2 x \,dx
u = \tan x \,\,\,\, du = \sec^2 x \,dx
= \int \(u + u^3) \,du = \frac{1}{2} u^2 + \frac{1}{4} u^4 + C
Answer 2: \frac{1}{2} \tan^2 x + \frac{1}{4} \tan^4^ x + C
Wich one is right and why?
Homework Statement
\int \frac{\tan x}{\cos^5 x} \,dx
The Attempt at a Solution
Solution 1
\int \frac{\tan x}{\cos^5 x} \,dx = \int \frac{\sin x}{\cos^6 x}
u = \cos x \,\,\,\, du = -\sin x \,dx
= -\int u^-^5 \,du = \frac{1}{4 u^4} + C
Answer 1: \frac{1}{4 \cos^4 x} + C
Solution 2
\int \frac{\tan x}{\cos^5 x} \,dx = \int \tan x \sec^4 x \,dx = \int \tan x (1 + \tan^2 x) \sec^2 x \,dx
u = \tan x \,\,\,\, du = \sec^2 x \,dx
= \int \(u + u^3) \,du = \frac{1}{2} u^2 + \frac{1}{4} u^4 + C
Answer 2: \frac{1}{2} \tan^2 x + \frac{1}{4} \tan^4^ x + C
Wich one is right and why?
Last edited: