I The spacetime curvature changed by an object

KallaNikhil
Does the amount by which an object changes the spacetime curvature depend on relativistic mass or the rest mass? Through this question I just want to answer whether momentum equals [relativistic mass * velocity] or is it [rest mass * gamma * velocity]. Both the formulas might be the same but I think they are different conceptually
 
Physics news on Phys.org
The source term for gravity in general relativity is the stress-energy tensor.

The modern (last thirty+ years, although pop-sci hasn't caught on yet) recommendation is to forget relativistic mass. It just tends to cause confusion - such as people guessing that it's the source of gravity. It's not. Stick with mass, meaning invariant mass, and use ##\gamma m## where needed.
 
  • Like
Likes KallaNikhil
KallaNikhil said:
Both the formulas might be the same but I think they are different conceptually

It's better to think of the momentum as ##\gamma mv## rather than calling ##\gamma m## the relativistic mass. But that's just a matter of preference.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top