Understanding Limit Value with L'Hôpital's Rule

  • Thread starter Thread starter Amar.alchemy
  • Start date Start date
  • Tags Tags
    Limit Value
Amar.alchemy
Messages
78
Reaction score
0

Homework Statement


The value of the limit is
\[\mathop {\lim }\limits_{\theta \to 0} \left( {\frac{{\ln \left( {1 + \sin \theta } \right)}}{{\sin \theta }}} \right)\]


Homework Equations



L'Hôpital's rule

The Attempt at a Solution



The value is 1... rite??
 
Physics news on Phys.org
Yes, it's 1.
 
Thanks :)
 
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top