Time Dependence of the Infinite Square Well

AI Thread Summary
The discussion centers on normalizing a wave function for an infinite square well, specifically combining the first two energy levels. The normalization process leads to the conclusion that the constant A equals sqrt(1/a). The explicit wave function is expressed as Ψ(x,t) = sqrt(1/a)[ψ_1 + ψ_2]e^(-iωt), but confusion arises regarding the time dependence of |Ψ(x,t)|^2. It is clarified that the correct expression for Ψ(x,t) should include individual time factors for each stationary state, which resolves the issue of time dependence in expectation values. The conversation highlights the importance of correctly incorporating time factors in quantum mechanics calculations.
Odysseus
Messages
10
Reaction score
0

Homework Statement



The question comes straight from Intro to QM by Griffiths (pg 29, Q 2.6).

A wave equation is given representing an even mixture of the first two energy levels of the infinite square well. The task is to normalize the wave function, state it explicitly and then derive some expectation values.

Homework Equations



The wave equation is
Ψ(x,o)=A[ψ_1+ψ_2]

where ψ_1 and ψ_2 are the first and second stationary states in the one dimensional infinite square well. ψ_n=sqrt(2/a)*sin((n*pi*x)/a), where a is the length of the interval.

The Attempt at a Solution



For convenience I set β=pi/a

(1) the normalization:
(A^2) ∫|Ψ(x,o)|^2 dx (x=0 to a) = 1

Which works out to

(A^2)[∫(sin(βx)^2)dx + ∫(sin(βx)*sin(2βx))dx + ∫(sin(2βx)^2)dx] = 1

The different wave functions are orthonormal which cancels the middle integral and the other two are just the normalization integrals for the individual energy levels, thus.

(A^2)[(a/2)+(a/2)] = 1

A=sqrt(1/a)

(2) Explicit statement of wave function and |Ψ(x,t)|^2

Ψ(x,t)= sqrt(1/a)[ψ_1+ψ_2]e^(-iωt)

Now here is my main question, the problem calls for |Ψ(x,t)|^2 to be written in terms of sinusoidal functions of time, but

|Ψ(x,t)|^2 = ΨΨ*

so

ΨΨ*= (1/a)[(ψ_1+ψ_2)^2](e^(-iωt))(e^(iωt))

ΨΨ*= (1/a)[(ψ_1+ψ_2)^2]

because the exponentials cancel. There is no time dependence. There must be though because in the question immediately following, which asks for <x>, says that the value oscillates in time.

The math in the book is a little out of my comfort zone so it is completely possible that I've missed something trivial.

Thanks for any help.
 
Physics news on Phys.org
Your expression for Ψ(x,t) is incorrect. The wavefunction Ψ(x,t) is a sum over the stationary states ψ_1(x) and ψ_2(x), with both states multiplied by their respective exponential time factors, exp(- i E_n t / hbar), where E_n is the energy of the n-th stationary state.
 
Last edited:
Thanks a lot, Eric. It makes much more sense now.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top